Synlett 2009(5): 751-754  
DOI: 10.1055/s-0028-1087817
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

An Efficient Synthesis of N-Arylputrescines and Cadaverines

Natalia P. Link, Jimena E. Díaz, Liliana R. Orelli*
Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
Fax: +54(11)49648250; e-Mail: lorelli@ffyb.uba.ar;
Further Information

Publication History

Received 9 July 2008
Publication Date:
16 February 2009 (online)

Abstract

We present a two-step, general synthesis of N-aryl­putrescines and cadaverines, by cesium carbonate mediated alkylation of anilines with ω-chloronitriles and subsequent reduction. The cesium-mediated alkylation shows remarkable selectivity towards the monoalkylation product. The method is straightforward and leads to satisfactory global yields.

    References and Notes

  • 1a Cohen SS. A Guide to Polyamines   Oxford University Press; New York: 1998. 
  • 1b Thomas T. Thomas TJ. Cell Mol. Life Sci.  2001,  58:  244 
  • 2 Bachrach U. Polyamines in Cancer: Basic Mechanisms and Clinical Approaches   Landes Bioscience Publishers; Austin, TX: 1996. 
  • 3a Frydman B. Valasinas A. Expert Opin. Ther. Pat.  1999,  9:  1055 
  • 3b Aizencang G. Harari P. Buldain G. Guerra L. Pickart M. Hernández P. Frydman B. Cell. Mol. Biol.  1998,  44:  615 
  • 3c Burns MR. inventors; US  6,872,852. 
  • 3d Sacaan AI. Johnson KM. J. Pharmacol. Exp. Ther.  1990,  255:  1060 
  • 3e McGurk JF. Bennett MVL. Zukin RS. Proc. Natl. Acad. Sci. U.S.A.  1990,  87:  9971 
  • 3f Bigge CF. Malone TC. Expert Opin. Ther. Pat.  1993,  3:  951 
  • 3g Bergeron RJ. Yao GW. Yao H. Weimar WR. Sninski CA. Raisler B. Feng Y. Wu Q. Gao F. J. Med. Chem.  1996,  39:  2461 
  • 4a Orelli LR. García MB. Perillo IA. Heterocycles  2000,  53:  2437 
  • 4b García MB. Grilli S. Lunazzi L. Mazzanti A. Orelli L. J. Org. Chem.  2001,  66:  6679 
  • 4c García MB. Grilli S. Lunazzi L. Mazzanti A. Orelli L. Eur. J. Org. Chem.  2002,  4018 
  • 4d García MB. Orelli LR. Magri ML. Perillo IA. Synthesis  2002,  2687 
  • 4e Magri ML. Vanthuyne N. Roussel C. García MB. Orelli LR. J. Chromatorgr., A  2005,  1069:  203 
  • 4f García MB. Torres RA. Orelli LR. Tetrahedron Lett.  2006,  47:  4857 
  • 5 Hedrera ME. Perillo IA. J. Heterocycl. Chem.  2000,  37:  1431 
  • 6 Abd-El-Aziz A. Bernardin SA. Tran K. Tetrahedron Lett.  1999,  40:  1835 
  • 7 Perillo IA. Fernández BM. Lamdan S. J. Chem. Soc., Perkin Trans. 2  1977,  2068 
  • 8a Hartwig JF. Angew. Chem.  1998,  37:  2046 
  • 8b Wolfe JP. Buchwald SL. J. Org. Chem.  2000,  65:  1144 
  • 8c Wolfe JP. Tomori H. Sadighi JP. Yin J. Buchwald SL. J. Org. Chem.  2000,  65:  1158 
  • 8d Beletskaya IP. Bessmertnykh AG. Averin AD. Denat F. Guilard R. Eur. J. Org. Chem.  2005,  261 
  • 9 Salvatore RN. Yoon ChH. Jung KW. Tetrahedron  2001,  57:  7785 
  • 10 Romera JL. Cid JM. Trabanco AA. Tetrahedron Lett.  2004,  45:  8797 
  • 11a Salvatore RN. Nagle AS. Schmidt SE. Jung KW. Org. Lett.  1999,  1:  1893 
  • 11b Salvatore RN. Schmidt SE. Shin SI. Nagle AS. Worrell JH. Jung KW. Tetrahedron Lett.  2000,  41:  9705 
  • 11c Salvatore RN. Nagle AS. Jung KW. J. Org. Chem.  2002,  67:  674 
  • 11d Nagle AS. Salvatore RN. Cross RM. Kapxhiu EA. Sahab S. Yoon CH. Jung KW. Tetrahedron Lett.  2003,  44:  5695 
  • 11e Cohen RJ. Fox DL. Eubank JF. Salvatore RN. Tetrahedron Lett.  2003,  8617 
  • 11f Cui S.-L. Jiang Z.-Y. Wang Y.-G. Synlett  2004,  1829 
  • 11g Fink DM. Synlett  2004,  13:  2394 
  • 11h Lehman F. Synlett  2004,  2447 
  • 11i Varala R. Ramu MMA. Adapa SR. Synlett  2004,  1747 
  • 11j Salvatore RN. Smith RA. Nischwitz AK. Gavin T. Tetrahedron Lett.  2005,  46:  8931 
  • 11k Futamura Y. Kurokawa M. Obata R. Nishiyama S. Sugai T. Biosci., Biotechnol., Biochem.  2005,  69:  1892 
  • 11l Nivsarkar M. Kaushik MP. Catal. Commun.  2005,  6:  367 
  • 11m Kondoh A. Yorimitsu H. Oshima K. Tetrahedron  2006,  62:  2357 
  • 11n Bhowruth V. Brown AK. Senior SJ. Snaith JS. Besra GS. Bioorg. Med. Chem. Lett.  2007,  17:  5643 
  • 11o Bisoyi HK. Kumar S. Tetrahedron Lett.  2007,  48:  4399 
  • 12 Kruizinga WH. Kellog RM. J. Am. Chem. Soc.  1981,  103:  5183 
  • 13 Galli C. Org. Prep. Proced. Int.  1992,  24:  285 
  • 15 Orelli LR. Salerno A. Hedrera ME. Perillo IA. Synth. Commun.  1998,  28:  1625 
14

Representative Procedure for the Synthesis of Compounds 2
A solution of 4-chlorobutyronitrile (2.5 mmol) in DMF (1 mL) was added during 1.5 h to a mixture of aniline (2.5 mmol), Cs2CO3 (2.5 mmol), and KI (5 mmol) in DMF (4 mL). The mixture was stirred 2.5 h at 95 ˚C. After completion of the reaction, as indicated by TLC, the mixture was treated with Et2O (50 mL) and H2O (10 mL). The aqueous phase was separated and extracted with Et2O (30 mL). The combined organic layers were dried over anhyd Na2SO4 and filtered. The solvent was evaporated in vacuo. The crude product was purified by column chromatography (SiO2, hexane-CHCl3) to furnish 4-(phenylamino)butyro-nitrile in 69% yield as an oil.
Spectral and Analytical Data for Selected Compounds 4-(Phenylamino)butyronitrile (2a) was obtained as an oil (69%). ¹H NMR (300 MHz, CDCl3): δ = 7.17-7.22 (2 H, m), 6.74 (1 H, dt, J = 7.4, 1.0 Hz), 6.61 (2 H, dd, J = 8.8, 1.0 Hz), 3.68 (1 H, br s), 3.33 (2 H, t, J = 6.7 Hz), 2.49 (2 H, t, J = 7.0 Hz), 1.93-2.02 (2 H, m). ¹³C NMR (75 MHz, CDCl3): δ = 147.63, 129.43, 119.50, 117.91, 112.87, 42.31, 25.26, 14.81. Anal. Calcd for C10H12N2: C, 74.97; H, 7.55; N, 17.48. Found: C, 74.87; H, 7.65; N, 17.42.
N,N-Bis(3-cyanopropyl)aniline (3a) was obtained as an oil. ¹H NMR (300 MHz, CDCl3): δ = 7.24-7.27 (3 H, m), 6.80 (1 H, t, J = 7.3 Hz), 6.75 (2 H, d, J = 8.0 Hz), 3.44 (4 H, t, J = 7.1 Hz), 2.38 (4 H, t, J = 7.0 Hz), 1.90-1.96 (4 H, m). ¹³C NMR (75 MHz, CDCl3): δ = 147.08, 129.64, 119.28, 118.30, 114.10, 50.26, 23.09, 14.73. Anal. Calcd for C14H17N3: C, 73.98; H, 7.54; N, 18.49. Found: C, 73.84; H, 7.59; N, 18.51.
5-(Phenylamino)valeronitrile (2i) was obtained as an oil (65%). ¹H NMR (300 MHz, CDCl3): δ = 7.18-7.21 (2 H, m), 6.72 (1 H, dt, J = 7.0, 1.0 Hz), 6.60 (2 H, dd, J = 8.7, 1.0 Hz), 3.62 (1 H, br s), 3.18 (2 H, t, J = 6.5 Hz), 2.40 (2 H, t, J = 6.8 Hz), 1.71-1.89 (4 H, m). Anal. Calcd for C11H14N2: C, 75.82; H, 8.10; N, 16.08. Found: C, 75.76; H, 8.14; N, 16.10.

16

General Procedure for the Synthesis of Compounds 1
A solution of compound 2 (2 mmol) in THF (60 mL) was treated with with freshly generated borane. The solution was refluxed for 1 h, cooled, and treated with MeOH. The solvent was then eliminated in vacuo. The residue was refluxed with 10% HCl (60 mL), filtered and made alkaline with 10% aq NaOH. The alkaline mixture was extracted with CH2Cl2 (2  40 mL). The organic phase was washed with H2O (10 mL), dried over Na2SO4, and filtered. The solvent was eliminated in vacuo. The crude product was purified by column chromatography (SiO2, CH2Cl2-2-PrNH2).
Spectral and Analytical Data for Selected Compounds N-Phenyl-1,4-butanediamine (1a) was obtained as an oil (80%). ¹H NMR (300 MHz, CDCl3): δ = 7.15-7.20 (2 H, m), 6.69 (1 H, tt, J = 7.3, 1.0 Hz), 6.60 (2 H, td, J = 7.5, 1.0 Hz), 3.13 (2 H, t, J = 6.8 Hz), 2.77 (2 H, t, J = 6.7 Hz), 2.45 (2 H, br s), 1.56-1.70 (4 H, m). ¹³C NMR (75 MHz, CDCl3): δ = 148.37, 129.19, 117.17, 112.69, 43.72, 41.64, 30.63, 26.83. Anal. Calcd for C10H16N2: C, 73.13; H, 9.82; N, 17.06. Found: C, 73.06; H, 9.85; N, 17.01.
N-(Phenyl)-1,5-pentanediamine (1i) was obtained as an oil (82%). ¹H NMR (300 MHz, CDCl3): δ = 7.14-7.17 (2 H, m), 6.68 (1 H, dt, J = 7.9, 0.9 Hz), 6.60 (2 H, dd, J = 7.9, 0.9 Hz), 3.11 (2 H, t, J = 7.0 Hz), 2.71 (2 H, t, J = 6.7 Hz), 1.85 (2 H, br s), 1.53-1.70 (4 H, m), 1.37-1.52 (2 H, m). ¹³C NMR (75 MHz, CDCl3): δ = 144.90, 125.68, 113.59, 109.13, 40.33, 38.41, 29.71, 25.85, 20.90. Anal. Calcd for C11H18N2: C, 74.11; H, 10.18; N, 15.71. Found: C, 74.01; H, 10.21; N, 15.67.
Spectral and analytical data of compounds 1b-h,j-l are available as Supporting Information.