RSS-Feed abonnieren
DOI: 10.1055/s-0028-1087538
One-Pot Synthesis of Ureido Peptides and Urea-Tethered Glycosylated Amino Acids Employing Deoxo-Fluor and TMSN3
Publikationsverlauf
Publikationsdatum:
21. Januar 2009 (online)

Abstract
A facile one-pot procedure for the synthesis of urea-linked peptidomimetics and neoglycopeptides under Curtius rearrangement conditions employing Deoxo-Fluor and TMSN3 is described. The method is efficient and circumvents the isolation of acyl azide and isocyanate intermediates. The rearrangement of the in situ generated acyl azide via the acyl fluoride was carried out under ultrasonication followed by amine capture to insert a urea bond. The protocol worked well with all the common N-urethane-protected amino acids and also with a sugar-6-acid.
Key words
peptidomimetics - neoglycopeptides - ureido linkage - acyl fluoride - Deoxo-Fluor
- 1 
             
            Liskamp RMJ. Angew. Chem., Int. Ed. Engl. 1994, 33: 633
- 2 
             
            Gellman SH. Acc. Chem. Res. 1998, 31: 173
- 3 
             
            Burgess K.Linthicum DS.Shin H. Angew. Chem., Int. Ed. Engl. 1995, 34: 907
- 4 
             
            Nowick JS.Abdi M.Bellamo KA.Love JA.Martinez EJ.Noronha G.Smith EM.Ziller JM. J. Am. Chem. Soc. 1995, 117: 89
- 5 
             
            Nowick JS. Acc. Chem. Res. 1999, 32: 287
- 6 
             
            Fischer L.Semetey V.Lozano JM.Schaffiner AP.Briand JP.Didierjean C.Guichard G. Eur. J. Org. Chem. 2007, 3944
- 7 
             
            Patil BS.Vasanthakumar GR.Sureshbabu VV. J. Org. Chem. 2003, 68: 7274
- 8 
             
            Boeijen A.Liskamp RMJ. Eur. J. Org. Chem. 1999, 2127
- 9 
             
            Tamilarasu N.Huq F.Rana TM. J. Am. Chem. Soc. 1999, 121: 1579
- 10 
             
            Bakshi P.Wolfe MS. J. Med. Chem. 2004, 47: 6485
- 11 
             
            Nowick JS.Holmer DL.Noronha G.Smith EM.Nguyen JM.Huang SL. J. Org. Chem. 1996, 61: 3929
- 12 
             
            Boeijen A.Ameijde Jv.Liskamp RMJ. J. Org. Chem. 2001, 6: 8454
- 13 
             
            Guichard G.Semetey V.Didierjean C.Aubry A.Briand JP.Rodriguez M. J. Org. Chem. 1999, 64: 8702
- 14 
             
            Myers AC.Kowalski JA.Lipton MA. Bioorg. Med. Chem. Lett. 2004, 14: 5219
- 15 
             
            Sureshbabu VV.Patil BS.Venkataramanarao R.
 J. Org. Chem. 2006, 71: 7697
- 16 
             
            Sureshbabu VV.Venkataramanarao R.Hemantha HP. Int. J. Pept. Res. Ther. 2008, 14: 34
- 17 
             
            Sureshbabu VV. .Tantry SJ. Int. J. Pept. Res. Ther. 2005, 11: 131
- 18 
             
            Sureshbabu VV.Chennakrishnareddy G.Narendra N. Tetrahedron Lett. 2008, 49: 1408
- 19 
             
            Baumann M.Baxendale IR.Ley SV.Nikbin N.Smith CD.Tierney JP. Org. Biomol. Chem. 2008, 6: 1577
- 20a 
             
            Lal GS.Pez GP.Pesaresi RJ.Prozonic FM. Chem. Commun. 1999, 215Reference Ris Wihthout Link
- 20b 
             
            Lal GS.Pez GP.Pesaresi RJ.Prozonic FM.Cheng H. J. Org. Chem. 1999, 64: 7048Reference Ris Wihthout Link
- 21 
             
            Singh RP.Shreeve JM. Synthesis 2002, 2561
- 22 
             
            Singh RP.Chakraborty D.Shreeve JM. J. Fluorine Chem. 2002, 111: 153
- 23 
             
            Kangani CO.Day BW.Kelley DE. Tetrahedron Lett. 2008, 49: 914
- 24a 
             
            Kangani CO.Day BW.Kelley DE. Tetrahedron Lett. 2007, 48: 5933Reference Ris Wihthout Link
- 24b 
             
            Kangani CO.Kelley DE. Tetrahedron Lett. 2005, 46: 8917Reference Ris Wihthout Link
- 25 
             
            Tunoori AR.White JM.Georg GI. Org Lett. 2000, 2: 4091
- 26 
             
            Carpino LA.Mansour EME.El-Fahan A. J. Org. Chem. 1993, 58: 4162
- 27 
             
            Kaduk C.Wenschuh H.Beyermann M.Forner K.Carpino LA.Bienert M. Lett. Pept. Sci. 1995, 2: 285
- Utility of commercial activated zinc dust to deprotonate amine hydrochloride salts is documented. Sureshbabu et al. demonstrated the conversion of amino acid/peptide acid ester hydrochloride salts into the corresponding free amines, see:
- 28a 
             
            Sureshbabu VV.Ananda K. J. Pept. Res. 2001, 57: 223Reference Ris Wihthout Link
- 28b  For the use of zinc dust
            as HCl scavenger in peptide synthesis via N-Fmoc
            amino acid chlorides under non-Schotten-Baumann conditions,
            see:  
            Gopi HN.Sureshbabu VV. Tetrahedron Lett. 1998, 39: 9769Reference Ris Wihthout Link
- 28c  For a similar application
            in N-Boc-Z-Fmoc amino acid fluoride couplings
            under neutral conditions, see:  
            Sureshbabu VV.Ananda K. Lett. Pept. Sci. 2000, 7: 41Reference Ris Wihthout Link
- 28d  For the preparation of
            oligomer-free Z-amino acids employing
            ZCl/Zn dust, see:  
            Gopi HN.Ananda K.Sureshbabu VV. Protein Pept. Lett. 1999, 6: 233Reference Ris Wihthout Link
- 31 First, a solution of α-d-galactose (5 mmol) and ZnBr2 (5.2 mmol)
            in acetone (20 mL) was stirred for 12 h and filtered. The filtrate
            was concentrated and after a simple workup, the resulting (1,2),(3,4)-diacetylgalactopyranose
            was dissolved in MeCN. Then, TEMPO and Na3PO4 buffer
            were added and the reaction mixture was warmed to 35 ˚C.
            Sodium chlorite and bleach were added, and the reaction mixture
            was stirred till completion of reaction. A simple workup lead to
            the isolation of the desired sugar-6-acid. See:  
            Jhao M.Li J.Mano E.Song Z.Tschaen DM.Grabowski EJJ.Reider PJ. J. Org. Chem. 1999, 64: 2564
References and Notes
         Typical Experimental
            Procedure for 2a
         
To a stirred solution of Fmoc-Ala-OH
         (1 mmol) in dry CH2Cl2, Et3N (2
         mmol) and Deoxo-Fluor (1.4 mmol) were added at 0 ˚C.
         After the  addition of TMSN3 (1.3 mmol), the reaction
         mixture was subjected to ultrasonication. After 10 min, H-Leu-OMe
         (1.5 mmol) was added, and the ultrasonication was continued until
         completion of the reaction. The reaction mixture was evaporated,
         hexane was added, and the residue was filtered. It was washed with
         H2O, hexane, and dried under vacuum. Finally, the compound
         was recrystallized using DMSO-H2O to afford
         the urea as a colorless crystalline solid.
         Selected Spectroscopic
            Data
         
Fmoc-Val-ψ(NH-CO-NH)-Leu-OBzl (2b): white solid, mp 184 ˚C. ¹H
         NMR (300 MHz, DMSO): δ = 0.92 (12 H, m), 1.32-1.85
         (4 H, m), 3.10 (2 H, s), 3.70-3.80 (2 H, m), 4.20 (1 H,
         t), 4.42 (2 H, m), 5.10 (1 H, d), 6.60-6.70 (2 H, m), 7.20-7.85
         (13 H, m). ¹³C NMR (200 MHz, DMSO): δ = 18.5,
         19.5, 22.0, 23.1, 24.5, 29.2, 40.3, 47.2, 59.0, 66.6, 120.0, 125.1,
         126.5, 127.0, 127.2, 128.4, 129.3, 137.6, 141.2, 144.0, 155.4, 156.8,
         176.4. HRMS: m/z calcd for C33H39N3NaO5:
         580.2787; found: 580.2774 [M + Na].
         Z-Gly-ψ(NH-CO-NH)-Val-OMe (2d): Off-white solid, mp 159 ˚C. ¹H
         NMR (300 MHz, DMSO): δ = 0.93 (6 H, d), 3.14 (1
         H, m), 3.58 (3 H, s), 4.51 (3 H, m), 5.30 (2 H, s), 6.10 (2 H, m),
         6.48 (1 H, t), 7.20-7.40 (5 H, m). ¹³C
         NMR (200 MHz, DMSO): δ = 17.1, 31.1, 52.1, 56.2,
         57.8, 65.4, 127.1, 127.2, 128.5, 141.2, 156.8, 157.5, 171.6. HRMS: m/z calcd for C16H23N3NaO5:
         360.1535; found: 360.1513 [M + Na].
Boc-Glu(OBzl)-ψ(NH-CO-NH)-Ile-OMe
         (2e): solid, mp 138 ˚C. ¹H
         NMR (300 MHz, DMSO): δ = 0.91 (6 H, d), 1.30-1.45
         (11 H, s), 1.65 (1 H, m), 2.55 (2 H, m), 2.90 (2 H, m), 3.65 (3
         H, s), 3.80-3.90 (2 H, m), 5.15 (2 H, s), 5.30 (1 H, d),
         6.35 (1 H, d), 6.50 (1 H, d), 7.30-7.40 (5 H, m). ¹³C NMR
         (200 MHz, DMSO): δ = 22.1, 23.1, 24.7, 28.6, 37.9, 39.7,
         419, 50.9, 51.7, 61.9, 63.1, 78.7, 126.7, 127.6, 128.9, 137.7, 155.3,
         156.8, 157.5, 178.1. HRMS: m/z calcd
         for C24H37N3NaO7: 502.2529;
         found: 502.2543 [M + Na].
Fmoc-Val-ψ(NH-CO-NH)-2,3,4,6-tetra-O-acetyl-β-d-glucopyranoside
         (3a): white solid, mp 179 ˚C. ¹H
         NMR (300 MHz, DMSO): δ = 0.93 (6 H, d), 1.95 (12
         H, s), 3.12 (1 H, m), 4.30-4.45 (3 H, m), 4.67 (2 H, d),
         4.90-5.20 (5 H, m), 5.40 (1 H, m), 5.70 (2 H, br), 6.90-7.50
         (8 H, m). ¹³C NMR (200 MHz, DMSO): δ = 15.1,
         20.8, 21.1, 33.2, 47.5, 59.7, 67.8, 68.0, 69.1, 69.2, 73.0, 74.8,
         81.0, 126.8, 128.2, 128.4, 128.6, 141.3, 142.5, 156.0, 158.1, 170.7.
         HRMS: m/z calcd for C34H41N3NaO12:
         706.2588; found: 706.2601 [M + Na].
(1,2),(3,4)-Diacetylgalactopyranosyl-6-NH-CO-NH-Phe-OMe
         (4b): solid, mp 104 ˚C. ¹H
         NMR (300 MHz, DMSO): δ = 1.25 (12 H, s), 3.21
         (2 H, d), 3.85 (3 H, s), 4.30-4.53 (3 H, m), 4.80 (1 H,
         m), 5.50-5.70 (2 H, m), 6.31 (2 H, s), 7.10-7.40
         (5 H, m). ¹³C NMR (200 MHz, DMSO): δ = 23.5,
         34.2, 50.8, 54.2, 67.4, 69.2, 76.8, 77.9, 89.2, 107.6, 113.5, 125.4, 126.7,
         127.8, 137.0, 157.2, 171.8. HRMS: m/z calcd
         for C22H30N2NaO8: 473.1900;
         found: 473.1918 [M + Na].
 
    