Abstract
A new, efficient method for the synthesis of benzylphosphonate
diesters via a palladium(0)-catalyzed cross-coupling reaction between
benzyl halides and H-phosphonate diesters, using Pd(OAc)2 as
a palladium source and Xantphos as a supporting ligand, has been
developed.
Key words
benzylphosphonates - palladium cross-coupling - H-phosphonates - C-phosphonates
References and Notes
<A NAME="RG31708ST-1A">1a </A>
Kittredge JS.
Roberts E.
Science
1969,
164:
37
<A NAME="RG31708ST-1B">1b </A>
White AK.
Metcalf WW.
Annu.
Rev. Microbiol.
2007,
61:
379
<A NAME="RG31708ST-2">2 </A>
Engel R.
Chem.
Rev.
1977,
77:
349
<A NAME="RG31708ST-3">3 </A>
Kafarski P.
Lejczak B.
Phosphorus, Sulfur Silicon
1991,
63:
193
<A NAME="RG31708ST-4">4 </A>
Huang JM.
Chen RY.
Heteroatom. Chem.
2000,
11:
480
<A NAME="RG31708ST-5">5 </A>
Engel R. In
Handbook of Organophosphorus Chemistry
Engel R.
Marcel Dekker;
New
York:
1992.
p.559
<A NAME="RG31708ST-6A">6a </A>
Michaelis A.
Kaehne R.
Chem.
Ber.
1898,
31:
1048
<A NAME="RG31708ST-6B">6b </A>
Methoden
der organischen Chemie (Houben-Weyl)
Vol. XII/1:
Müller E.
George
Thieme Verlag;
Stuttgart:
1964.
p.433
<A NAME="RG31708ST-7">7 </A>
Bhattacharya AK.
Thyagarajan G.
Chem. Rev.
1981,
81:
415
<A NAME="RG31708ST-8A">8a </A>
Michaelis A.
Becker T.
Chem.
Ber.
1897,
30:
1003
<A NAME="RG31708ST-8B">8b </A>
Methoden
der organischen Chemie (Houben-Weyl)
Vol. XII/1:
Müller E.
George
Thieme Verlag;
Stuttgart:
1964.
p.446
<A NAME="RG31708ST-8C">8c </A>
Waschbüsch R.
Carran J.
Marinetti A.
Savignac P.
Synthesis
1997,
727
<A NAME="RG31708ST-9">9 </A>
Brill TB.
Landon SJ.
Chem. Rev.
1984,
84:
577
<A NAME="RG31708ST-10">10 </A>
Harizi A.
Zantour H.
Phosphorus, Sulfur Silicon
2004,
179:
1883
<A NAME="RG31708ST-11">11 </A>
Saady M.
Lebeau L.
Mioskowski C.
Helv.
Chim. Acta
1995,
78:
670
<A NAME="RG31708ST-12">12 </A>
DeBruin KE.
Chandrasekaran S.
J. Am. Chem. Soc.
1973,
95:
974
<A NAME="RG31708ST-13">13 </A>
Kers A.
Stawinski J.
Dembkowski L.
Kraszewski A.
Tetrahedron
1997,
53:
12691
<A NAME="RG31708ST-14A">14a </A>
Witt D.
Rachon J.
Phosphorus,
Sulfur Silicon
1995,
107:
33
<A NAME="RG31708ST-14B">14b </A>
Witt D.
Rachon J.
Heteroatom. Chem.
1996,
7:
359
<A NAME="RG31708ST-15A">15a </A>
Birckenbach L.
Kellermann K.
Chem.
Ber.
1925,
58:
786
<A NAME="RG31708ST-15B">15b </A>
Michalski J.
Skowronska A.
Lopusinski A.
Phosphorus,
Sulfur Silicon
1991,
58:
61
<A NAME="RG31708ST-16A">16a </A>
Yao Z.-J.
Gao Y.
Burke TR.
Tetrahedron: Asymmetry
1997,
10:
3727
<A NAME="RG31708ST-16B">16b </A>
Li P.
Zhang M.
Peach
ML.
Liu H.
Yang D.
Roller PP.
Org. Lett.
2003,
5:
3095
<A NAME="RG31708ST-17">17 </A>
Löschner T.
Engels JW.
Nucleic Acids Res.
1990,
18:
5083
<A NAME="RG31708ST-18A">18a </A>
Alt M.
Eisenhardt S.
Serwe M.
Renz R.
Engels
JW.
Caselmann WH.
Eur.
J. Clin. Invest.
1999,
29:
868
<A NAME="RG31708ST-18B">18b </A>
Lehman TJ.
Engels JW.
Bioorg.
Med. Chem.
2001,
9:
1827
<A NAME="RG31708ST-19">19 </A>
Amberg S.
Engels JW.
Helv. Chim. Acta
2002,
85:
2503
<A NAME="RG31708ST-20">20 </A>
Johansson T.
Stawinski J.
Chem. Commun.
2001,
2564
<A NAME="RG31708ST-21">21 </A>
Lavén G.
Stawinski J.
Coll. Symposium Series
2005,
7:
195
<A NAME="RG31708ST-22">22 </A>
Abbas S.
Hayes CJ.
Synlett
1999,
1124
<A NAME="RG31708ST-23">23 </A>
Fitton P.
McKeon JE.
Ream BC.
J.
Chem. Soc., Chem. Commun.
1969,
370
<A NAME="RG31708ST-24">24 </A>
Liegault B.
Renaud J.-L.
Bruneau C.
Chem.
Soc. Rev.
2008,
36:
290
<A NAME="RG31708ST-25">25 </A>
Prim D.
Campagne J.-M.
Joseph D.
Andrioletti B.
Tetrahedron
2002,
58:
2041
<A NAME="RG31708ST-26">26 </A>
Bravo-Altamirano K.
Huang ZH.
Montchamp JL.
Tetrahedron
2005,
61:
6315
<A NAME="RG31708ST-27">27 </A>
Schwan AL.
Chem.
Soc. Rev.
2004,
33:
218
<A NAME="RG31708ST-28">28 </A>
Abbas S.
Hayes CJ.
Worden S.
Tetrahedron
Lett.
2000,
41:
3215
<A NAME="RG31708ST-29">29 </A>
Presence of water in the reaction
mixture facilitated reduction of palladium(II) acetate and resulted
in improved reproducibility of the reactions.
<A NAME="RG31708ST-30">30 </A>
Stockland RA.
Levine AM.
Giovine MT.
Guzei
IA.
Cannistra JC.
Organometallics
2004,
23:
647
<A NAME="RG31708ST-31">31 </A>
Klingensmith LM.
Strieter ER.
Barder TE.
Buchwald SL.
Organometallics
2006,
25:
82
<A NAME="RG31708ST-32">32 </A> Lower yields of diphenyl benzylphosphonate
for the reactions of diphenyl H-phosphonate (Table 2, entries
9 and 10) were due to partial hydrolysis of the starting H-phosphonate
under the reaction conditions
<A NAME="RG31708ST-33">33 </A>
Kalek M.
Stawinski J.
Organometallics
2007,
26:
5840
<A NAME="RG31708ST-34">34 </A>
Stille JK.
Lau KSY.
Acc. Chem.
Res.
1977,
10:
434
<A NAME="RG31708ST-35">35 </A>
Amatore C.
Jutand A.
J. Organomet. Chem.
1999,
576:
254
<A NAME="RG31708ST-36">36 </A>
Hartwig JF.
Acc.
Chem. Res.
1998,
31:
852
<A NAME="RG31708ST-37">37 </A>
Stawinski J.
Strömberg R.
Zain R.
Tetrahedron
Lett.
1992,
33:
3185
<A NAME="RG31708ST-38">38 </A>
Typical Procedure
for the Preparation of Dinucleoside Benzylphosphonates 2 : Pd(OAc)2 (0.05
mmol), Xantphos (0.1 mmol), and N ,N -diisopropylethylamine (mmol), were refluxed
for ca. 3 h in degassed THF (5 mL) containing H2 O (0.025
mmol). To this, separate diastereomers of dinucleoside H-phosphonate 1 (1a or 1b ; 0.5 mmol),
[³7 ]
and benzyl
bromide (0.75 mmol), dissolved in THF (2 mL), were added and the
mixture was heated under reflux for 3 h. After concentration and
partition of the reaction mixture between sat. aq NaHCO3 and
CH2 Cl2 , the product was purified by silica
gel column chromatography using a stepwise gradient of ethanol (0-5%)
in CH2 Cl2 containing triethylamine (0.02%).
Compounds 2 were obtained as off-white
solids (purity >98%, ¹ H NMR
spectroscopy). Compound 2a : 83% yield
from 1a (probably R
P diastereomer).
HRMS: m /z [M + Na]+ calcd
for C54 H65 N4 NaO13 PSi+ :
1059.3947; found: 1059.3908. Compound 2b :
84% yield from 1b (probably S
P
diastereomer).
HRMS: m /z [M + Na]+ calcd
for C54 H65 N4 NaO13 PSi+ :
1059.3947; found: 1059.3941. Benzylphosphonates (Table
[² ]
) prepared from benzyl chlorides
vs. benzyl bromides were spectrally indistinguishable, and were
obtained as yellowish oils (purity >98%, ¹ H
NMR spectroscopy). Diethyl benzylphosphonate: HRMS: m /z [M + Na]+ calcd
for C11 H17 NaO3 P+ :
251.0808; found: 251.0818. Diethyl 4-methyl-benzylphosphonate: HRMS: m /z [M + Na]+ calcd
for C11 H17 NaO3 P+ :
265.0964; found: 265.0975. Diethyl 4-methoxybenzylphosphonate:
HRMS: m /z [M + Na]+ calcd for
C12 H19 NaO4 P+ :
281.0913; found: 281.0907. Diethyl 4-fluorobenzylphosphonate: HRMS: m /z [M + Na]+ calcd
for C11 H16 FNaO3 P+ :
269.0713; found: 269.0727. Diethyl 4-chlorobenzylphosphonate: HRMS: m /z [M + Na]+ calcd
for C11 H16 ClNaO3 P+ :
285.0418; found: 285.0394. Diisopropyl benzylphosphonate: HRMS: m /z [M + Na]+ calcd
for C13 H21 NaO3 P+ :
279.1121; found: 279.1127. Diphenyl benzylphosphonate: HRMS: m /z [M + Na]+ calcd
for C19 H17 NaO3 P+ :
347.0808; found: 347.0798. The benzylphosphonate diesters
synthesized were characterized by ¹ H NMR, ¹³ C
NMR, and ³¹ P NMR spectroscopy.
<A NAME="RG31708ST-39A">39a </A>
Xu Y.
Zhang J.
J.
Chem. Soc., Chem. Commun.
1986,
1606
<A NAME="RG31708ST-39B">39b </A>
Zhang J.
Xu Y.
Huang G.
Guo H.
Tetrahedron Lett.
1988,
29:
1955