Subscribe to RSS
DOI: 10.1055/s-0028-1087372
A New Synthesis of Benzo[b]acridones
Publication History
Publication Date:
26 November 2008 (online)

Abstract
A novel and efficient route for the synthesis of new benzo[b]acridones has been described. It involves the Diels-Alder reaction of N-substituted-4-quinolone-3-carbaldehyde with ortho-benzoquinodimethanes giving benzo[b]-1,6,6a,12a-tetrahydroacridones, which are the result of a cycloaddition reaction followed by an in situ deformylation. The oxidation of these tetrahydroacridones in dimethyl sulfoxide using a catalytic amount of iodine gives the new benzo[b]acridone derivatives. It was demonstrated that the cycloaddition reaction is only efficient if an electron-withdrawing N-protecting group is present.
Key words
4-quinolone-3-carbaldehydes - benzo[b]acridones - Diels-Alder reactions - oxidation - N-protecting groups.
- 1
Michael JP. Nat. Prod. Rep. 2008, 25: 166 - 2a
Ahua KM.Ioset J.-R.Ransijn A.Mauël J.Mavi S.Hostettmann K. Phytochemistry 2004, 65: 963Reference Ris Wihthout Link - 2b
Meepagala KA.Schrader KK.Wedge DE.Duke SO. Phytochemistry 2005, 66: 2689Reference Ris Wihthout Link - 3a
Delmas F.Avellaneda A.Di Giogio C.Robin M.
De ClercqTimon-David P.Galy JJ. Eur. J. Med. Chem. 2004, 685Reference Ris Wihthout Link - 3b
Winter RW.Kelly JX.Smilkstein MJ.Dodean R.Bagby GC.Rathbun RK.Levin JI.Hinrichs D.Riscoe MK. Exp. Parasitol. 2006, 114: 47Reference Ris Wihthout Link - 3c
Kelly JX.Smilkstein MJ.Cooper RA.Lane KD.Johnson RA.Janowsky A.Dodean RA.Hinrichs DJ.Winter R.Riscoe M. Antimicrob. Agents Chemother. 2007, 51: 4133Reference Ris Wihthout Link - 4a
Kawaii S.Tomono Y.Katase E.Ogawa K.Yano M.Takemura Y.Juichi M.Ito C.Furukawa H. Leukemia Res. 1999, 23: 263Reference Ris Wihthout Link - 4b
Itoigawa M.Ito C.Wu T.-S.Enjo F.Tokuda H.Nishino H.Furukawa H. Cancer Lett. 2003, 193: 133Reference Ris Wihthout Link - 4c
Harrison RJ.Reszka AP.Haider SM.Romagnoli B.Morrell J.Read MA.Gowan SM.Incles CM.Kelland LR.Neidle S. Bioorg. Med. Chem. Lett. 2004, 14: 5845Reference Ris Wihthout Link - 5a
Tabarrini O.Cecchetti V.Fravolini A.Nocentini G.Barzi A.Sabatini S.Miao H.Sissi C. J. Med. Chem. 1999, 42: 2136Reference Ris Wihthout Link - 5b
Nakamura S.Kozuka M.Bastow KF.Tokuda H.Nishino H.Suzuki M.Tatsuzaki J.Natschke SLM.Kuo S.-C.Lee K.-H. Bioorg. Med. Chem. 2005, 13: 4396Reference Ris Wihthout Link - 5c
Boumendjel A.Macalou S.Ahmed-Belkacem A.Blanc M.Di Pietro A. Bioorg. Med. Chem. 2007, 15: 2892Reference Ris Wihthout Link - 5d
Gopinath VS.Thimmaiah P.Thimmaiah KN. Bioorg. Med. Chem. 2008, 16: 474Reference Ris Wihthout Link - 6a
Yamamoto N.Furukawa H.Ito Y.Yoshida S.Maeno K.Nishiyama Y. Antiviral Res. 1989, 12: 21Reference Ris Wihthout Link - 6b
Fujiwara M.Okamoto M.Okamoto M.Watanabe M.Machida H.Shigeta S.Konno K.Yokota T.Baba M. Antiviral Res. 1999, 43: 189Reference Ris Wihthout Link - 6c
Tabarrini O.Manfroni G.Fravolini A.Cecchetti V.Sabatini S.
De ClercqRozenski J.Canard B.Dutartre H.Paeshuyse J.Neyts J. J. Med. Chem. 2006, 49: 2621Reference Ris Wihthout Link - 7a
Goodell JR.Madhok AA.Hiasa H.Ferguson DM. Bioorg. Med. Chem. 2006, 14: 5467Reference Ris Wihthout Link - 7b
Bernardino AMR.Castro HC.Frugulhetti ICPP.Loureiro NIV.Azevedo AR.Pinheiro LCS.Souza PML.Giongo V.Passamani F.Magalhães UO.Alburquerque MG.Cabral LM.Rodrigues CR. Bioorg. Med. Chem. 2008, 16: 313Reference Ris Wihthout Link - 8
Lowden CT.Bastow KF. Antiviral Res. 2003, 59: 143 - 9a
Smith JA, andWest RM. inventors; WO 099424. ; PCT/GB2002/002509Reference Ris Wihthout Link - 9b
Taki M, andMasahiko S. inventors; WO 132335. ; PCT/JP2006/311561Reference Ris Wihthout Link - 9c
Blázquez MT.Muñiz FM.Sáez S.Simón LM.Alonso A.Raposo C.Lithgow A.Alcázar V.Morán JR. Heterocycles 2006, 69: 73Reference Ris Wihthout Link - 9d
García-Garrido SE.Caltagirone C.Light ME.Gale PA. Chem. Commun. 2007, 1450Reference Ris Wihthout Link - 10a
Costes N.Le Deit H.Michel S.Tillequin F.Koch M.Pfeiffer B.Renard P.Léonce S.Guilbaud N.Kraus-Berthier L.Pierré A.Atassi G. J. Med. Chem. 2000, 43: 2395Reference Ris Wihthout Link - 10b
Tillequin F. In Natural Products in the New Millenium: Prospects and Industrial ApplicationsRauter AP.Palma FB.Justino J.Araújo ME.Santos SP. Kluwer; Dordrecht: 2002. p.311-328Reference Ris Wihthout Link - 10c
Michel S.Gaslonde T.Tillequin F. Eur. J. Med. Chem. 2004, 649Reference Ris Wihthout Link - 11
Nguyen TM.Sittisombut C.Boutefnouchet S.Lallemand M.-C.Michel S.Koch M.Tillequin F.Mazinghien R.Lansiaux A.David-Cordonnier M.-H.Pfeiffer B.Kraus-Berthier L.Léonce S.Pierré A. J. Med. Chem. 2006, 49: 3383 - 12
Koch M. Bull. Acad. Nat. Med. 2007, 191: 83 - 13
Mai HDT.Gaslonde T.Michel S.Tillequin F.Koch M.Bongui J.-B.Elomri A.Seguin E.Pfeiffer B.Renard P.David-Cordonnier M.-H.Laine W.Bailly C.Kraus-Berthier L.Léonce S.Hickman JA.Pierré A.
J. Med. Chem. 2003, 46: 3072 - 14a
Hughes GK.Lahey FN.Price JR.Webb LJ. Nature (London) 1948, 162Reference Ris Wihthout Link - 14b
Tillequin F.Michel S.Skaltsounis A.-L. In Alkaloids: Chemical and Biological Perspectives Vol. 12:Pelletier SW. Pergamon; Oxford: 1998. p.1-102Reference Ris Wihthout Link - 15
Nishio R.Wessely S.Sugiura M.Kobayashi S. J. Comb. Chem. 2006, 8: 459 - 16a
Rudas M.Nyerges M.Toke L.Pete B.Groundwater PW. Tetrahedron Lett. 1999, 40: 7003Reference Ris Wihthout Link - 16b
Zhao J.Larock RC. J. Org. Chem. 2007, 72: 583Reference Ris Wihthout Link - 17
MacNeil SL.Wilson BJ.Snieckus V. Org. Lett. 2006, 8: 1133 - 18 1-Methyl-4-quinolone-3-carbaldehyde(1) was prepared by a Vilsmeier reaction
of 2′-aminoacetophenone, followed by acidic hydrolysis
of the resultant 4-chloroquinoline-3-carbaldehyde to form 4-quinolone-3-carbaldehyde
(8), which was then N-methylated to avoid
undesirable side reactions of the amino group. The following procedure
was used:
Coelho A.El-Maatougui A.Ravina E.Cavaleiro JAS.Silva AMS. Synlett 2006, 3324 - 19
Cava MP.Deana AA. J. Am. Chem. Soc. 1959, 81: 4266 - This type of deformylation reaction has been previously reported for similar compounds, see:
- 23a
Cremins PJ.Saengchantara ST.Wallace TW. Tetrahedron 1987, 43: 3075Reference Ris Wihthout Link - 23b
Sandulache A.Silva AMS.Cavaleiro JAS. Tetrahedron 2002, 58: 105Reference Ris Wihthout Link - 26 4,7-Dimethoxy-1,3-dihydrobenzo[c]thiophene 2,2-dioxides 2b,c were prepared
according to the following literature procedure:
Sandulache A.Silva AMS.Cavaleiro JAS. Monatsh. Chem. 2003, 134: 551 - A reagent system used by our group in the cyclodehydro-genation of 2′-hydroxychalcones and dehydrogenation of tetrahydroxanthones, see:
- 27a
Silva AMS.Pinto D.Tavares HR.Cavaleiro JAS.Jimeno ML.Elguero J. Eur. J. Org. Chem. 1998, 2031Reference Ris Wihthout Link - 27b
Barros A.Silva AMS. Magn. Reson. Chem. 2006, 44: 1122Reference Ris Wihthout Link - 27c
Barros A.Silva AMS. Monatsh. Chem. 2006, 137: 1505Reference Ris Wihthout Link
References and Notes
Optimized Experimental
Procedure
A mixture of 1-methyl-4-quinolone-3-carbaldehyde
(1, 121.7 mg, 0.65 mmol) and 1,3-dihydrobenzo[c]thiophene 2,2-dioxide (2a) in 1,2,4-trichlorobenzene (TCB, 6 mL)
was refluxed under a variety of reaction conditions (see Table
[¹]
). After cooling to r.t.,
the reaction mixture was purified by silica gel column chromatography;
the TCB solvent was removed using light PE as eluent, and then the
cycloadducts were eluted with a mixture of light PE-EtOAc
(4:1). The solvent was evaporated to dryness and the mixture of diastereomers
was separated by preparative thin-layer chromatography using a mixture
of light PE-EtOAc (9:1). The 7-methylbenzo[b]-1,6,6a,12a-tetrahydroacridones 4 and 5 and the
benzo[b]acridone(6) were obtained as yellow compounds.
Physical Data for cis -7-Methylbenzo[ b ]-1,6,6a,12a-tetrahydroacridone (4) ¹H NMR (300.1 MHz, CDCl3): δ = 2.80-3.02 (m, 3 H, 1 × H-1, 2 × H-6), 3.11 (s, 3 H, NCH3), 3.31-3.36 (m, 1 H, H-12a), 3.81 (dd, 1 H, J = 1.6, 17.3 Hz, H-1), 3.95 (dt, 1 H, J = 5.5, 11.0 Hz, H-6a), 6.69 (d, 1 H, J = 8.6 Hz, H-8), 6.71 (ddd, 1 H, J = 0.9, 7.3, 7.6 Hz, H-10), 6.96 (d, 1 H, J = 7.4 Hz, H-5), 7.06 (dt, 1 H, J = 1.5, 7.4 Hz, H-4), 7.13 (dt, 1 H, J = 1.3, 7.4 Hz, H-3), 7.20 (d, 1 H, J = 7.4 Hz, H-2), 7.41 (ddd, 1 H, J = 1.7, 7.3, 8.6 Hz, H-9), 7.86 (dd, 1 H, J = 1.7, 7.6 Hz, H-11). ¹³C NMR (75.47 MHz, CDCl3): δ = 26.1 and 26.6 (C-1 and C-6), 37.6 (NCH3), 45.1 (C-12a), 60.4 (C-6a), 113.1 (C-8), 116.6 (C-10), 118.8 (C-11a), 125.8 (C-4), 126.4 (C-3), 127.9 (C-11), 129.1 and 129.2 (C-2 and C-5), 133.0 (C-5a), 133.8 (C-1a), 135.6 (C-9), 150.0 (C-7a), 194.1 (C-12). ESI+-MS: m/z (%) = 264 (100) [M + H]+, 286 (93) [M + Na]+, 302 (8) [M + K]+, 549 (47) [2 M + Na]+. HRMS (EI, 70 eV): m/z calcd for C18H17NO: 263.1310; found: 263.1309.
22
Physical Data
for
trans
-7-Methylbenzo[
b
]-1,6,6a,12a-tetrahydroacridone
(5)
¹H NMR (300.1 MHz, CDCl3): δ = 2.80-2.90
(m, 1 H,
H-12a), 2.91-3.01 (m, 1 H, H-1), 3.07
(s, 3 H, NCH3), 3.11-3.16 (m, 1 H, H-6), 3.49-3.56
(m, 2 H, H-1, H-6), 3.57-3.63 (m, 1 H, H-6a), 6.81 (ddd,
1 H, J = 0.9,
7.3, 7.6 Hz, H-10), 6.90 (d, 1 H, J = 8.7
Hz, H-8), 7.18-7.25 (m, 4 H, H-2 to
H-5), 7.46
(ddd, 1 H, J = 1.8,
7.3, 8.7 Hz, H-9), 7.96 (dd, 1 H, J = 1.8,
7.6 Hz, H-11).
¹³C NMR (75.47
MHz, CDCl3): δ = 29.1
(C-1), 34.1 (NCH3), 36.6 (C-6), 46.8 (C-12a), 59.0 (C-6a),
113.9 (C-8), 117.5 (C-10), 119.6 (C-11a), 126.2 and 126.6 (C-3 and
C-4), 127.9 (C-1), 128.9 and 129.0 (C-2 and C-5), 132.9 (C-5a), 134.4
(C-1a), 135.7 (C-9), 152.7 (C-7a), 194.6 (C-12). ESI+-MS: m/z (%) = 264
(100) [M + H]+, 286
(25) [M + Na]+, 549 (19) [2
M + Na]+. HRMS (EI, 70 eV): m/z calcd for C18H17NO:
263.1310; found: 263.1312.
Physical Data
for 7-Methylbenzo[
b
]acridone (6)
¹H
NMR (300.1 MHz, CDCl3): δ = 3.95
(s, 1 H, NCH3), 7.26 (ddd, 1 H, J = 0.8,
6.8, 7.9 Hz, H-10), 7.43 (ddd, 1 H, J = 1.2, 6.7,
8.1 Hz, H-3), 7.50 (d, 1 H, J = 8.6
Hz, H-8), 7.57 (ddd, 1 H, J = 1.3,
6.7, 8.2 Hz, H-4), 7.74 (ddd, 1 H, J = 1.7,
6.8, 8.6 Hz, H-9), 7.81 (s, 1 H, H-6), 7.90 (d, 1 H, J = 8.2 Hz,
H-5),
8.05 (d, 1 H, J = 8.1
Hz, H-2), 8.57 (dd, 1 H, J = 1.7, 7.9
Hz, H-11), 9.13 (s, 1 H, H-1). ¹³C
NMR (75.47 MHz, CDCl3): δ = 33.8
(NCH3), 110.5 (C-6), 114.4 (C-8), 120.5 (C-10), 121.3
(C11a), 122.6 (C-12a), 124.5 (C-3), 126.9
(C-5), 127.9
(C-1a), 128.0 (C-11), 128.7 (C-4), 129.0 (C-1), 129.5 (C-2), 134.4
(C-9), 136.4 (C-5a), 139.7 (C-6a), 143.6 (C-7a), 179.4 (C-12). ESI+-MS: m/z (%) = 260
(100) [M + H]+, 282
(33) [M + Na]+, 541
(54) [2 M + Na]+.
HRMS (EI, 70 eV): m/z calcd
for C18H13NO: 259.0997; found: 259.0999.
Although the cycloaddition reactions were carried out under nitrogen to avoid moisture, the reaction medium was not deoxygenated, the residual oxygen presumably being the oxidant.
28
Optimized Experimental
Procedure
Iodine (4%) was added to a solution
of the appropriate
7-ethoxycarbonylbenzo[b]-1,6,6a,12a-tetrahydroacridones 10a-c (0.16
mmol) in DMSO (3 mL). The solution was heated at 170-180 ˚C
or at reflux, for 50 min. After cooling to r.t., the reaction mixture
was poured onto ice (10 g) and H2O (10 mL), a small amount
of Na2S2O3 was added to eliminate
the remaining traces of iodine, and the reaction mixture was stirred
for some minutes. The yellow solid obtained was filtered off, washed
with H2O (2 × 20 mL), dissolved
in EtOAc (20 mL), and washed with H2O (2 × 20 mL).
The solvent was evaporated to dryness and the residue was purified
by silica gel column with a mixture of light PE-EtOAc (4:1
to 2:1). The 7-ethoxycarbonylbenzo[b]acridones 12a-c were
obtained as yellow solids and the benzo[b]acridones 13a-c were
obtained as orange solids. When the reactions were carried out 170-180 ˚C;
the results were as follows: 12a, 37%; 13a, 49%; 12b,
25%; 13b, 37%; 12c, 25%; 13c,
45%. When the reactions were carried in refluxing DMSO,
the yields were: 12a, 2%; 13a, 59%; 12b, 2%; 13b, 59%; 12c,
4%; 13c, 82%.
Physical Data
for 7-Ethoxycarbonylbenzo[
b
]-acridone (12a)
Mp 118-120 ˚C. ¹H
NMR (300.1 MHz, CDCl3): δ = 1.42
(t, 3 H, J = 7.1
Hz, NCO2CH2CH
3),
4.47 (q, 2 H, J = 7.1
Hz, NCO2CH
2CH3),
7.39 (ddd, 1 H, J = 1.1,
7.4, 7.7 Hz, H-10), 7.52 (ddd, 1 H, J = 1.2,
6.8, 8.1 Hz, H-3), 7.62 (ddd, 1 H, J = 1.3,
6.8, 8.2 Hz, H-4), 7.66 (ddd, 1 H, J = 1.7,
7.4, 8.4 Hz, H-9), 7.86 (d, 1 H, J = 8.4
Hz, H-8), 7.92 (d, 1 H, J = 8.2 Hz,
H-5), 8.04 (d, 1 H, J = 8.1
Hz, H-2), 8.31 (dd, 1 H, J = 1.7,
7.7 Hz, H-11), 8.37 (s, 1 H, H-6), 8.85 (s, 1 H, H-1). ¹³C
NMR (75.47 MHz, CDCl3): δ = 14.1
(NCO2CH2
CH3), 64.2
(NCO2
CH2CH3),
119.8 (C-6), 122.6 (C-8), 124.6
(C-10), 125.4 (C-12a),
125.8 (C-11a), 126.1 (C-3), 126.8
(C-11), 127.7 (C-5),
128.0 (C-1), 128.9 (C-4), 129.5 (C-2), 129.9 (C-1a), 133.0 (C-9),
135.2 (C-5a), 135.9 (C-6a), 140.8 (C-7a), 153.8 (NCO2CH2CH3),
181.0 (C-12). ESI+-MS: m/z (%) = 318
(75) [M + H]+, 340
(31) [M + Na]+, 356
(11)
[M + K]+,
657 (100) [2 M + Na]+,
974 (30) [3 M + Na]+. HRMS
(EI, 70 eV): m/z calcd for C20H15NO3:
317.1052; found: 317.1053.
Physical Data
for Benzo[
b
]acridone (13a)
Mp >300 ˚C. ¹H
NMR (300.1 MHz, CDCl3): δ = 7.22
(ddd, 1 H, J = 0.8,
6.9, 8.0 Hz, H-10), 7.44 (ddd, 1 H, J = 0.9,
7.1, 7.9 Hz, H-3), 7.55 (d, 1 H, J = 8.4
Hz, H-8), 7.60 (ddd, 1 H, J = 1.1,
7.1, 8.2 Hz, H-4), 7.76 (ddd, 1 H, J = 1.5,
6.9, 8.4 Hz, H-9), 7.96 (s, 1 H, H-6), 8.01 (d, 1 H, J = 8.2 Hz,
H-5), 8.17 (d, 1 H, J = 7.9
Hz, H-2), 8.26 (dd, 1 H, J = 1.5,
8.0 Hz, H-11), 8.94 (s, 1 H, H-1), 11.75 (s, 1 H, NH). ¹³C
NMR (75.47 MHz, CDCl3): δ = 112.0
(C-6), 117.0 (C-8), 118.9 (C-11a), 120.2 (C-10), 121.2 (C-12a),
124.1 (C-3), 126.4
(C-11), 126.5 (C-5), 127.3 (C-1), 127.7
(C-1a), 128.5 (C-4), 129.7 (C-2), 134.3 (C-9), 135.9 (C-5a), 137.9
(C-6a), 142.1 (C-7a), 178.2 (C-12). ESI+-MS: m/z (%) = 246
(100) [M + H]+. HRMS
(EI, 70 eV): m/z calcd for C17H11NO:
245.0841; found: 245.0842.