RSS-Feed abonnieren
DOI: 10.1055/s-0028-1087343
Synthesis of Chiral Carbohydrate Ionic Liquids
Publikationsverlauf
Publikationsdatum:
12. November 2008 (online)

Abstract
Chiral room temperature ionic liquids, containing a carbohydrate moiety linked at the anomeric centre to an N-methylimidazolium group have been synthesised. The ionic liquids were prepared in a concise manner and provided ready access to both the d- and l-arabino enantiomers. The same strategy enabled the preparation of d-ribofuranose and d-xylofuranose analogues, in excellent yields.
Keywords
synthesis - chiral ionic liquid - carbohydrate - N-methylimidazolium
- 1a
Boon JA.Levisky JA.Pflug JL.Wilkes JS.
J. Org. Chem. 1986, 51: 480Reference Ris Wihthout Link - 1b
Welton T. Chem. Rev. 1999, 99: 2071Reference Ris Wihthout Link - 2a
Wasserscheid P.Welton T. Ionic Liquids in Synthesis Wiley-VCH; Weinheim: 2003.Reference Ris Wihthout Link - 2b
Wasserscheid P.Keim W. Angew. Chem. Int. Ed. 2000, 39: 3772Reference Ris Wihthout Link - 2c
Sheldon RA. Chem. Commun. 2001, 2399Reference Ris Wihthout Link - 2d
Handy ST.Okello M. Tetrahedron Lett. 2003, 45: 8399Reference Ris Wihthout Link - 2e
Xu X.Kotti SRSS.Liu J.Cannon JF.Headley AD.Li G. Org. Lett. 2004, 6: 4881Reference Ris Wihthout Link - 2f
Xiao J.-C.Shreeve JM.
J. Org. Chem. 2005, 70: 3072Reference Ris Wihthout Link - For recent reviews, see:
- 3a
Baudequin C.Baudoux J.Levillain J.Cahard D.Gaumont AC.Plaqueventa J.-C. Tetrahedron: Asymmetry 2003, 14: 3081Reference Ris Wihthout Link - 3b
Xue H.Verma R.Shreeve JM. J. Fluorine Chem. 2006, 127: 159Reference Ris Wihthout Link - 3c
Singh RP.Verma RD.Meshri DT.Shreeve JM. Angew. Chem. Int. Ed. 2006, 45: 3584Reference Ris Wihthout Link - 3d
Hagiwara R.Lee JS. Electrochemistry 2007, 75: 23Reference Ris Wihthout Link - 3e
Parvulescu VI.Hardacre C. Chem. Rev. 2007, 107: 2615Reference Ris Wihthout Link - 3f
van Rantwijk F.Sheldon RA. Chem. Rev. 2007, 107: 2757Reference Ris Wihthout Link - 3g
Winkel A.Reddy PVG.Wilhelm R. Synthesis 2008, 999Reference Ris Wihthout Link - 3h
Headley AD.Ni B. Aldrichimica Acta 2007, 40: 107Reference Ris Wihthout Link - 4a
Huddleston JG.Willauer HD.Swatloski RP.Visser AE.Rogers RD. Chem. Commun. 1998, 16: 1765Reference Ris Wihthout Link - 4b
Armstrong DW.He L.Liu Y.-S. Anal. Chem. 1999, 71: 3873Reference Ris Wihthout Link - 4c
Huddleston JG.Visser AE.Reichert WM.Willauer HD.Broker GA.Rogers RD. Green Chem. 2001, 3: 156Reference Ris Wihthout Link - 4d
Liu J.-F.Jiang G.-B.Chi Y.-G.Cai Y.-Q.Zhou Q.-X.Hu J.-T. Anal. Chem. 2003, 75: 5870Reference Ris Wihthout Link - 5
Handy ST. Curr. Org. Chem. 2005, 9: 959 - 6a
Welton T. Coord. Chem. Rev. 2004, 248: 2459Reference Ris Wihthout Link - 6b
Lee S. Chem. Commun. 2006, 1049Reference Ris Wihthout Link - 7
Baudequin C.Bregeon D.Levillain J.Guillen F.Plaquevent J.-C.Gaumont A.-C. Tetrahedron: Asymmetry 2005, 16: 3921 - 8a
Earle MJ.McCormac PB.Seddon KR. Green Chem. 1999, 1: 23Reference Ris Wihthout Link - 8b
Wang Z.Wang Q.Zhang Y.Bao W. Tetrahedron 2005, 46: 4657Reference Ris Wihthout Link - 8c
Carda-Broch S.Berthod A.Armstrong DW. Anal. Bioanal. Chem. 2003, 375: 191Reference Ris Wihthout Link - 9a
Baudoux J.Judeinstein P.Cahard D.Plaquevert J.-C. Tetrahedron Lett. 2005, 46: 1137Reference Ris Wihthout Link - 9b
Fringuelli F.Pizzo F.Tortoioli S.Vaccaro L. J. Org. Chem. 2004, 69: 7745Reference Ris Wihthout Link - 9c
Tosoni M.Laschat S.Bato A. Helv. Chim. Acta 2004, 87: 2742Reference Ris Wihthout Link - 10
Baudequin C.Baudoux J.Levillain J.Cahard D.Gaumont AC.Plaqueventa J.-C. Tetrahedron: Asymmetry 2003, 14: 3081 - 11
Levillian J.Dubant G.Abrunhosa I.Gulea M.Gaumont AC. Chem. Commun. 2003, 2914 - 12
Pernak J.Feder-Kubis J. Chem. Eur. J. 2005, 11: 4441 - 13a
Génisson Y.Lauthde Viguerie N.André C.Baltas M.Gorrichon L. Tetrahedron: Asymmetry 2005, 16: 1017Reference Ris Wihthout Link - 13b
Ding J.Desikan V.Han X.Xiao TL.Ding R.Jenks WS.Armstrong DW. Org. Lett. 2005, 7: 335Reference Ris Wihthout Link - 13c
Jodry JJ.Mikami K. Tetrahedron Lett. 2004, 45: 4429Reference Ris Wihthout Link - 13d
Bao W.Wang Z.Li Y. J. Org. Chem. 2003, 68: 591Reference Ris Wihthout Link - 13e
Guillen F.Brégeon D.Plaquevent J.-C. Tetrahedron Lett. 2006, 47: 1245Reference Ris Wihthout Link - 13f
Ni B.Headley AD. Tetrahedron Lett. 2006, 47: 7331Reference Ris Wihthout Link - 14
Brown T.Kadir K.Mackenzie G.Shaw G. J. Chem. Soc., Perkin Trans. 1 1979, 3107 - 15a
Barker R.Fletcher HG. J. Org. Chem. 1961, 26: 4605Reference Ris Wihthout Link - 15b
Austin PW.Hardy FE.Buchanan JG.Baddiley J. J. Chem. Soc. 1964, 2128Reference Ris Wihthout Link - 15c
Finch P.Iskander GM.Siriwardena AH. Carbohydr. Res. 1991, 210: 319Reference Ris Wihthout Link - 15d
Tejima S.Fletcher HG. J. Org. Chem. 1963, 28: 2999Reference Ris Wihthout Link - 15e
Kawana M.Kuzuhara H.Emoto S. Bull. Chem. Soc. Jpn. 1981, 54: 1492Reference Ris Wihthout Link - 16
Yuan L.Singh G. Tetrahedron Lett. 2001, 42: 6615 - 19
Cicchillo RM.Norris P. Carbohydr. Res. 2000, 328: 431
References and Notes
Selected Data
Compound 14 (X = Cl): [α]D
²8 +28
(c 1.1, CHCl3). IR (film): νmax = 3429,
3143, 3064, 3032, 2923, 2870, 1634, 1578, 1556, 1454, 1364, 1264,
1157, 1090, 1030, 748, 701, 638 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 3.60 (3 H,
s), 3.62
(1 H, dd, J = 2.8,
10.9 Hz), 3.82 (1 H, dd, J = 3.0,
10.9 Hz), 4.13 (1 H, m), 4.23 (1 H, t, J = 6.8
Hz), 4.41 (1 H, d, J = 11.1 Hz),
4.48 (1 H, d, J = 11.1
Hz), 4.53 (1 H, d, J = 11.9
Hz), 4.64 (2 H, d, J = 6.3Hz),
4.57 (1 H, m), 4.69 (1 H, d, J = 11.9 Hz),
6.46 (1 H, d, J = 5.8
Hz), 7.22-7.40 (16 H, m), 7.73
(1 H, m), 9.40
(1 H, s) ppm. ¹³C NMR (100 MHz, CDCl3):
δ = 36.0,
68.0, 72.5, 73.5, 78.2, 81.0, 82.6, 87.3, 121.5, 122.5, 128.1, 127.9,
128.1, 128.2, 128.3, 128.5, 128.6, 135.5, 136.4, 137.1, 137.2 ppm.
ESI-MS: m/z calcd C30H33N2O4:
485.2435; found: 485.2423. Glass-transition temperature: 18 ˚C.
Compound 15 (X = PF6
-): [α]D
²8 +14
(c 1.1, CHCl3). ¹H NMR
(400 MHz, CDCl3): δ = 3.41 (3 H, s),
3.57 (1 H, dd, J = 3.2,
10.9 Hz), 3.75 (1 H, dd, J = 3.3,
10.8 Hz), 4.09 (1 H, m), 4.17 (1 H, t, J = 6.7
Hz), 4.37 (1 H, d, J = 10.8
Hz), 4.43-4.50 (5 H, m), 4.62 (1 H, d, J = 11.8
Hz), 6.05 (1 H, d, J = 5.6 Hz),
7.05 (1 H, t, J = 1.7
Hz), 7.15-7.36 (15 H, m), 7.39
(1 H, t, J = 1.7 Hz),
8.56 (1 H, br s) ppm. ¹³C NMR (100 MHz,
CDCl3): δ = 35.9, 68.2, 73.3, 73.4,
73.5, 78.6, 81.3, 82.3, 87.4, 121.3, 122.7, 127.7, 127.9, 128.0,
128.1, 128.2, 128.3, 128.5, 128.6, 134.9, 136.2, 137.1, 137.2 ppm. ³¹P NMR
(160 Hz, CDCl3): δ = -142.9
(sept., J = 712.7
Hz) ppm. Glass-transition temperature -23 ˚C.
Compound 16: [α]D
²8 +9.5
(c 1.05, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 3.48 (3 H,
s, NCH3), 3.59 (1 H, dd, J = 3.2,
10.9 Hz), 3.76 (1 H, dd, J = 3.2,
10.9 Hz, H-5, H-5′), 4.09 (1 H, m, H-4), 4.18 (1 H, t, J = 6.4 Hz,
H-3), 4.38 (1 H, d, J = 11.0
Hz), 4.45 (1 H, d, J = 11.0
Hz), 4.46-4.53 (4 H, H-2), 4.61 (1 H, d, J = 11.8
Hz), 6.22 (1 H, d, J = 5.5
Hz), 7.16-7.36 (16 H), 7.53 (1 H, t, J = 1.7
Hz,), 8.75 (1 H, br s) ppm. ¹³C (100
MHz, CDCl3): 35.7, 67.9, 72.2, 73.1, 75.0, 78.3, 80.9,
82.1, 87.1, 121.1, 122.1, 127.4-128.4, 134.9, 136.3, 137.0,
137.1 ppm. ¹9F (376.5 MHz, CDCl3): -151.0 ppm.
Glass-transition temperature -36 ˚C.
Compound 19: [α]D
²8 +22.3
(c 1.3, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 3.46 (1 H,
dd, J = 3.2,
10.6 Hz), 3.52
(1 H, dd, J = 3.5,
10.6 Hz), 3.77 (3 H, s), 4.01 (1 H, dd, J = 1.8,
5.1 Hz), 4.41-4.62 (8 H, m), 6.25 (1 H, d, J = 5.8 Hz),
7.19-7.36 (16 H, m), 7.54 (1 H, s), 9.28 (1 H, s) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 36.0, 69.7,
72.5, 73.3, 73.4, 76.4, 76.9, 77.3, 78.1, 84.7, 87.9, 121.6, 122.1,
127.6, 127.8, 127.9, 128.0, 128.1, 128.3, 128.4, 136.5, 136.8, 137.3 ppm.
Glass-transition temperature 16 ˚C.
Compound 22: ¹H NMR (400 MHz,
CDCl3): δ = 3.67-3.76 (2 H,
m), 3.93 (3 H, s), 4.05 (1 H, m), 4.22 (1 H, t, J = 5.3 Hz),
4.35-4.46 (3 H, m), 4.51 (1 H, d, J = 11.9
Hz), 4.59
(1 H, d, J = 11.9
Hz), 4.62-4.69 (2 H, m), 6.30 (1 H, d, J = 3.7
Hz), 7.08 (1 H, br s), 7.11-7.36 (15 H, m), 7.39 (1 H, br
s), 9.26 (1 H, br s) ppm. ¹³C (100
MHz, CDCl3): δ = 36.3, 68.7, 72.5,
73.3, 75.0, 75.3, 78.0, 82.1, 85.0, 121.1, 122.1, 127.7, 128.5,
135.1, 137.3, 137.7, 137.8, 137.9 ppm.
Compound 23: ¹H NMR (400 MHz,
CDCl3): δ = 3.42 (3 H, s), 3.63 (1
H, dd, J = 2.1,
11.0 Hz), 3.89 (1 H, dd, J = 2.5, 11.0
Hz), 4.12 (1 H, m), 4.20 (1 H, t, J = 7.7
Hz), 4.38 (1 H, d, J = 10.5
Hz), 4.47 (1 H, d, J = 10.5
Hz), 4.60 (1 H, d, J = 11.9
Hz), 4.75 (1 H, dd, J = 5.8,
7.2 Hz), 4.85 (1 H, d, J = 11.9
Hz), 6.02 (1 H, d, J = 5.7
Hz), 7.06 (1 H, br s), 7.23-7.39 (10 H, m), 7.69 (1 H,
br s), 8.96 (1 H, br s) ppm. ¹³C NMR
(100 MHz, CDCl3): δ = 36.1, 68.0, 72.6,
73.5, 78.1, 80.9, 82.6, 87.3, 121.6, 122.4, 127.7, 128.5, 135.8,
136.5, 137.2, 137.3.
General Procedure
The
2,3,5-tri-O-benzylsugar (1 mmol) was
dissolved in dry CH2Cl2 (10 mL) and cooled
to 0 ˚C under Ar atmosphere. Propane-1,3-diyldioxyphosphoryl
chloride (2 mmol) was added, followed by 1-methylimidazole (2.5
mmol). The mixture was allowed to warm up to r.t. and stirred overnight (16
h). The reaction was then quenched with sat. NaHCO3 (10
mL) and the organic layer washed with H2O (2 × 10
mL) and dried (Na2SO4). The solvent was then
removed in vacuo to give the crude sugar phosphate, which was re-dissolved
in dry CH2Cl2 (10 mL) under an Ar atmosphere
and cooled to -78 ˚C. trimethylsilyl
triflate (cat.) was added and the mixture stirred for 2 min. 1-Methylimidazole
hydrochloride (2 mmol) was then added. The reaction mixture was
allowed to warm up to r.t. and stirred until TLC (CHCl3-MeOH, 80:20)
showed the reaction had gone to completion (4 h). The mixture was
then diluted with CH2Cl2 (10 mL) and washed
with sat. aq NaHCO3 (2 × 20
mL) and H2O (2 × 20 mL). The
organic layer was dried (Na2SO4) and concentrated in
vacuo to give a crude product, that was further purified by column
chromatography (CHCl3-MeOH, 80:20).
Silver
nitrate test for ionic liquids with anions other than chloride,
derived via metathesis: The ionic liquid (1 mg) is dissolved in
MeOH-deionized H2O (1:1; 1 mL). The resulting
solution is tested with 0.1 M AgNO3 (2 drops). No precipitation
was observed in BF4 and PF6 ionic liquids.