Synlett 2008(20): 3129-3132  
DOI: 10.1055/s-0028-1087276
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

The Synthesis of a Novel C-Nucleoside Designed as Guanosine Analogue

Vassilios N. Kourafalosa, Tony Titea, Emmanuel Mikrosa, Panagiotis Marakosa, Nicole Pouli*a, Jan Balzarinib
a Department of Pharmacy, Division of Pharmaceutical Chemistry, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
Fax: +30(210)7274747; e-Mail: pouli@pharm.uoa.gr;
b Rega Institute for Medical Research, K.U. Leuven, 3000 Leuven, Belgium
Further Information

Publication History

Received 18 July 2008
Publication Date:
27 November 2008 (online)

Abstract

The syntheses of a novel C-nucleoside which can be viewed as 8-aza-3,9-dideazaguanosine, as well as of the corresponding heterocyclic base, are described. N-[4-(2,3,5-tri-O-Acetyl-β-d-ribofuranosylmethyl)-2-methoxypyridin-3-yl]acetamide was regiospecifically nitrated and upon reduction and protection of the amino group underwent ring closure to the corresponding pyrazolopyridine derivative. The guanosine analogue was obtained via successive cleavage of the protecting groups.

    References and Notes

  • 1a De Clercq E. Antiviral Res.  2005,  67:  56 
  • 1b Jordheim L. Calmarini CM. Dumontet C. Lancet Oncol.  2002,  3:  415 
  • 1c Nabhana C. Gartenhaus RB. Tallman MS. Leukemia Res.  2004,  28:  429 
  • 2a Cristalli G. Costanzi S. Lambertucci C. Taffi S. Vittori S. Volpini R. Farmaco  2003,  58:  193 
  • 2b Sanghvi YS. In Antisense Research and Applications   Crooke ST. Lebleu B. CRC Press; Boca Raton FL: 1993.  p.273-288  
  • 2c Kool ET. Morales JC. Guckian KM. Angew. Chem. Int. Ed.  2000,  39:  990 
  • 3a Kojima N. Inoue K. Nakajima-Shibata R. Kawahara S. Ohtsuka E. Nucleic Acids Res.  2003,  31:  7175 
  • 3b Mizusawa S. Nishimura S. Seela F. Nucleic Acids Res.  1986,  14:  1319 
  • 4a Cook DP. Rousseau RJ. Mian AM. Meyer RB. Dea P. Ivanovics G. Streeter DG. Witkowski JT. Stout MG. Simon LN. Sidwell RW. Robins RK. J. Am. Chem. Soc.  1975,  97:  2916 
  • 4b Liu M.-C. Luo M.-Z. Mozdziesz DE. Lin T.-S. Dutschman GE. Gullen EA. Cheng Y.-C. Sartorelli AC. Nucleosides, Nucleotides Nucleic Acids  2001,  22:  1975 
  • 5 Girgis NS. Michael MA. Smee DF. Alaghamandan HA. Robins RK. Cottam HB. J. Med. Chem.  1990,  33:  2750 
  • 6a Wu O. Simons C. Synthesis  2004,  1533 
  • 6b Watanabe KA. In Chemistry of Nucleosides and Nucleotides   Vol. 3:  Townsend LB. Plenum Press; New York: 1994.  p.421-535  
  • 6c Von Krosigk U. Benner SA. J. Am. Chem. Soc.  1995,  117:  5261 
  • 6d Matulic-Adamic J. Beigelman L. Portmann S. Egli M. Usman N. J. Org. Chem.  1996,  61:  3909 
  • 6e Hilbrand S. Blaser A. Parel PS. Leumann CJ. J. Am. Chem. Soc.  1997,  119:  5499 
  • 7a Kourafalos VN. Marakos P. Pouli N. Townsend LB. Synlett  2002,  1479 
  • 7b Kourafalos VN. Marakos P. Pouli N. Townsend LB. J. Org Chem.  2003,  68:  6466 
  • 7c Korouli S. Lougiakis N. Marakos P. Pouli N. Synlett  2008,  181 
  • 8 Chapman D. Hurst J. J. Chem. Soc., Perkin Trans. 1  1980,  2398 
  • 9 Marakos P. Pouli N. Wise D. Townsend BL. Synlett  1997,  561 
  • 12a Olah GA. Narang SC. Gupta BGB. Malhotra R. J. Org. Chem.  1979,  44:  1247 
  • 12b Ramasany K. Imamura N. Robins RK. Revankar GR. J. Heterocycl. Chem.  1988,  25:  1893 
  • 16a Sanghvi YS. Larson SB. Robins RK. Revankar GR. J. Chem. Soc., Perkin Trans. 1  1990,  2943 
  • 16b Hadjipavlou C. Kostakis IK. Pouli N. Marakos P. Mikros E. Tetrahedron Lett.  2006,  47:  3681 
  • 17 Tsikouris O. Bartl T. Touek J. Lougiakis N. Tite T. Marakos P. Pouli N. Mikros E. Marek R. Magn. Res. Chem.  2008,  46:  643 
10

Preparation of 1-Acetyl-5-pthalimido-7-methoxy-1 H -pyrazolo[3,4- c ]pyridine (7)
Potassium acetate (77 mg, 0.78 mmol) and Ac2O (0.15 mL, 1.56 mmol) were added under argon to a solution of the acetamide 6 (170 mg, 0.52 mmol) in dry benzene (40 mL). The reaction mixture was heated at 80 ˚C, isoamyl nitrite (0.07 mL, 0.52 mmol) was added, and the resulting mixture was refluxed for 10 h. The insoluble material was then filtered off, the solvent was vacuum evaporated, and the residue was purified by column chromatography (silica gel) using a mixture of cyclohexane-EtOAc (60:40, v/v) as the eluent to give 7 as a white solid (153 mg, 87%); mp >300 ˚C (EtOH). ¹H NMR (400 MHz, CDCl3): δ = 2.84 (s, 3 H, COCH3), 4.13 (s, 3 H, OCH3), 7.82 (m, 3 H, H-4, H-4′,
H-5′), 7.98 (m, 2 H, H-3′, H-6′), 8.17 (s, 1 H, H-3). ¹³C NMR (50 MHz, CDCl3): δ = 23.9 (CH3CO), 54.8 (OCH3), 106.3 (C-4), 123.9 (C-3′, C-6′), 124.7 (C-3a), 131.8 (C-2a′, C-6a′), 134.5 (C-4′, C-5′), 135.6 (C-7a), 138.1 (C-3), 145.5 (C-5), 151.2 (C-7), 166.9 [CO(Phth)], 168.5 (COCH3). Anal. Calcd for C17H12N4O4: C, 60.71; H, 3.60; N, 16.66. Found: C, 60.82; H, 3.45; N, 16.88.

11

Preparation of 7-Methoxy-1 H -pyrazolo[3,4- c ]pyridin-5-amine (8)
Compound 7 (120 mg, 0.73 mmol) was dissolved in a sat. solution of NH3 in MeOH. The solution was stirred at r.t. for 4 h, the solvent was vacuum evaporated, and the residue was purified by column chromatography (silica gel) using a mixture of cyclohexane-EtOAc (20:80, v/v) as the eluent to give 8 (54 mg, 92%) as white crystals; mp 162-164 ˚C (EtOH). ¹H NMR (400 MHz, CDCl3): δ = 4.07 (s, 3 H, OCH3), 5.20 (br s, 2 H, NH2, D2O exch.), 6.29 (s, 1 H, H-4), 7.82 (s, 1 H, H-3). ¹³C NMR (50 MHz, CDCl3): δ = 53.3 (OCH3), 86.8 (C-4), 122.9 (C-7a), 132.0 (C-3a), 132.7 (C-3), 149.1 (C-5), 149.6 (C-7). Anal. Calcd for C7H8N4O: C, 51.21; H, 4.91; N, 34.13. Found: C, 51.43; H, 4.80; N, 34.26.

13

Preparation of 5-Amino-1 H -pyrazolo[3,4- c ]pyridin-7 (6H )-one (9)
Sodium iodide (81 mg, 0.54 mmol) and TMSCl (68 µL, 0.54 mmol) were added under argon to a solution of 8 (85 mg, 0.52 mmol) in dry MeCN (5 mL). The resulting mixture was heated at 65 ˚C for 3 h, the precipitate was filtered, washed with EtOAc, and it was purified by column chromatography (silica gel) using a mixture of EtOAc-MeOH (98:2, v/v) as the eluent to give 9 (60 mg, 77%); mp >300 ˚C (EtOH). ¹H NMR (400 MHz, DMSO-d 6): δ = 5.09 (br s, 2 H, NH2, D2O exch.), 5.40 (s, 1 H, H-4, D2O exch.), 7.54 (s, 1 H, H-3), 10.50 (br s, 1 H, N6H, D2O exch.), 13.38 (br s, 1 H, N¹H, D2O exch.). Anal. Calcd for C6H6N4O: C, 48.00; H, 4.03; N, 37.32. Found: C, 47.83; H, 3.95; N, 37.17.

14

Data for 7-Methoxy-3-(β- d -ribofuranosyl)-1 H -pyrazolo[3,4- c ]pyridin-5-amine (15)
Mp 216-218 ˚C (EtOH). ¹H NMR (400 MHz, CD3OD): δ = 3.72 (dd, 1 H, H-5′, J 4 ,5  = 4.70 Hz, J 5 ,5  = 12.13 Hz), 3.84 (dd, 1 H, H-5′, J 4 ,5  = 3.52 Hz, J 5 ,5  = 12.13 Hz), 4.01 (m, 1 H, H-4′), 4.04 (s, 3 H, OCH3), 4.18 (m, 1 H, H-3′), 4.31 (m, 1 H, H-2′), 5.04 (d, 1 H, H-1′, J 1 ,2  = 6.65 Hz), 6.46 (s, 1 H, H-4, D2O exch.). ¹³C NMR (50 MHz, CD3OD): δ = 53.7 (CH3O), 63.5 (C-5′), 72.7 (C-3′), 76.4 (C-2′), 80.4 (C-1′), 86.6 (C-4′), 87.9 (C-4), 124.0 (C-7a), 131.0 (C-3a), 143.2 (C-3), 150.7 (C-7). Anal. Calcd for C12H16N4O5: C, 48.65; H, 5.44; N, 18.91. Found: C, 48.45; H, 5.28; N, 18.83.

15

Data for 5-Amino-3-(β- d -ribofuranosyl)-1 H -pyrazolo[3,4- c ]pyridin-7 (6 H )-one (16)
Mp 158-160 ˚C (EtOH). ¹H NMR (400 MHz, CD3OD): δ = 3.72 (dd, 1 H, H-5′, J 4 ,5  = 4.70 Hz, J 5 ,5  = 12.13 Hz), 3.82 (dd, 1 H, H-5′, J 4 ,5  = 3.52 Hz, J 5 ,5  = 12.13 Hz), 3.99 (m, 1 H, H-4′), 4.16 (m, 1 H, H-3′), 4.26 (m, 1 H, H-2′), 4.97 (d, 1 H, H-1′, J 1 ,2  = 6.26 Hz), 5.81 (s, 1 H, H-4, D2O exch.). Anal. Calcd for C11H14N4O5: C, 46.81; H, 5.00; N, 19.85. Found: C, 46.75; H, 5.12; N, 19.97.

18

The AM1 calculations were performed in combination with RHF method and a convergence criterion of 0.01 kcal mol, using the Polak-Ribiere (conjugate gradient) geometry optimization method as implemented in the HyperChem 5.0 software (Hypercube Inc).