References and Notes
For reviews, see:
<A NAME="RG24008ST-1A">1a</A>
Momotake A.
Arai T.
J. Photochem. Photobiol., C
2004,
5:
1
<A NAME="RG24008ST-1B">1b</A>
Momotake A.
Arai T.
Polymer
2004,
45:
5369
<A NAME="RG24008ST-1C">1c</A>
Donnio B.
Buathong S.
Bury I.
Guillon D.
Chem. Soc. Rev.
2007,
36:
1495
<A NAME="RG24008ST-1D">1d</A>
Lo S.-C.
Burn PL.
Chem. Rev.
2007,
107:
1097
<A NAME="RG24008ST-2">2</A>
Lee B.
Park Y.
Hwang YT.
Oh W.
Yoon J.
Ree M.
Nat.
Mater.
2005,
4:
147
<A NAME="RG24008ST-3A">3a</A>
Inouq K.
Prog. Polym. Sci.
2000,
25:
453
<A NAME="RG24008ST-3B">3b</A>
Hoover NN.
Auten BJ.
Chandler BD.
J. Phys. Chem. B
2006,
110:
8606
<A NAME="RG24008ST-4">4</A>
Hawker CJ.
Wooley KL.
Frechet JMJ.
J. Chem. Soc., Perkin Trans. 1
1993,
1287
<A NAME="RG24008ST-5A">5a</A>
Jamnes TD.
Shinmori H.
Takeuchi M.
Shinkai S.
Chem.
Commun.
1996,
705
<A NAME="RG24008ST-5B">5b</A>
Mynar JL.
Lowery TJ.
Wemmer DE.
Pines A.
Frechet JMJ.
J. Am. Chem. Soc.
2006,
128:
6334
<A NAME="RG24008ST-6A">6a</A>
Gilat SL.
Andronov A.
Frechet JMJ.
Angew. Chem.
Int. Ed.
1999,
38:
1422
<A NAME="RG24008ST-6B">6b</A>
Andronov A.
Gilat
SL.
Frechet JMJ.
Ohta K.
Neuwahl FVR.
Fleming GR.
J. Am. Chem. Soc.
2000,
122:
1175
<A NAME="RG24008ST-6C">6c</A>
Akai I.
Okada A.
Kanemoto K.
Karasawa T.
Hashimoto H.
Kimura M.
J. Lumin.
2006,
119:
283
<A NAME="RG24008ST-6D">6d</A>
Ishida A.
Makishima Y.
Okada A.
Akai I.
Kanemoto K.
Karasawa T.
Kimura M.
Takeda J.
J. Lumin.
2008,
128:
283
<A NAME="RG24008ST-7A">7a</A>
Gillies ER.
Frechet JMJ.
J. Am. Chem. Soc.
2002,
124:
14137
<A NAME="RG24008ST-7B">7b</A>
Li S.
Szalai ML.
Kevwitch RM.
McGrath DV.
J.
Am. Chem. Soc.
2003,
125:
10516
<A NAME="RG24008ST-7C">7c</A>
Amir RJ.
Pessah N.
Shamis M.
Shabat D.
Angew. Chem.
Int. Ed.
2003,
42:
4494
<A NAME="RG24008ST-8A">8a</A>
Bettenhausen J.
Strohriegl P.
Adv.
Mater.
1996,
8:
507
<A NAME="RG24008ST-8B">8b</A>
Lupton JM.
Samuel IDW.
Beavington R.
Bern
PL.
Bassler H.
Adv. Mater.
2001,
13:
258
<A NAME="RG24008ST-9A">9a</A>
Halim M.
Pillow JNG.
Samuel IDW.
Burn PL.
Adv. Mater.
1999,
11:
371
<A NAME="RG24008ST-9B">9b</A>
Pillow JNG.
Halim M.
Lupton JM.
Burn PL.
Samuel IDW.
Macromolecules
1999,
32:
5985
<A NAME="RG24008ST-9C">9c</A>
Jiang Y.
Wang J.-Y.
Ma Y.
Cui
Y.-X.
Zhou Q.-F.
Pei J.
Org. Lett.
2006,
8:
4287
<A NAME="RG24008ST-9D">9d</A>
Coya C.
de Andres A.
Gomez R.
Seoane C.
Segura JL.
J.
Lumin.
2008,
128:
761
<A NAME="RG24008ST-10A">10a</A>
Rajakumar P.
Dhanasekaran M.
Selvam S.
Synthesis
2006,
1257
<A NAME="RG24008ST-10B">10b</A>
Schulz A.
Meier H.
Tetrahedron
2007,
63:
11429
<A NAME="RG24008ST-11A">11a</A>
Nguyen T.-C.
Martini IB.
Liu J.
Schwartz BJJ.
J. Phys. Chem.
2000,
104:
237
<A NAME="RG24008ST-11B">11b</A>
Catalan J.
Zimanyi L.
Saltiel J.
J.
Am. Chem. Soc.
2000,
122:
2377
<A NAME="RG24008ST-12A">12a</A>
Buhleier E.
Wehner W.
Vögtle F.
Synthesis
1978,
155
<A NAME="RG24008ST-12B">12b</A>
Hawker CJ.
Frechet JMJ.
J.
Am. Chem. Soc.
1990,
112:
7638
<A NAME="RG24008ST-13A">13a</A>
Beavington R.
Frampton MJ.
Lupton JM.
Burn
PL.
Samuel IDW.
Adv.
Funct. Mater.
2003,
13:
211
<A NAME="RG24008ST-13B">13b</A>
Mongin O.
Brunel J.
Porres L.
Blanchard-Desce M.
Tetrahedron Lett.
2003,
44:
2813
<A NAME="RG24008ST-13C">13c</A>
Lehmann M.
Fischbach I.
Spiess HW.
Meier H.
J. Am. Chem. Soc.
2004,
126:
772
<A NAME="RG24008ST-13D">13d</A>
Deb SK.
Maddux TM.
Yu L.
J. Am. Chem. Soc.
1997,
119:
9079
<A NAME="RG24008ST-13E">13e</A>
Sengupta S.
Sadhukhan SK.
Singh RS.
Pal N.
Tetrahedron
Lett.
2002,
43:
1117
<A NAME="RG24008ST-13F">13f</A>
Itami K.
Tonogaki K.
Ohashi Y.
Yoshida J.
Org. Lett.
2004,
6:
4093
<A NAME="RG24008ST-13G">13g</A>
Itami K.
Tonogaki K.
Nokami T.
Ohashi Y.
Yoshida J.
Angew. Chem.
Int. Ed.
2006,
45:
2404
<A NAME="RG24008ST-14A">14a</A>
Taylor RJK.
Casy G.
Org.
React. (N. Y.)
2003,
59:
357
<A NAME="RG24008ST-14B">14b</A>
Chow H.-F.
Ng M.-K.
Leung C.-W.
Wang
G.-X.
J. Am. Chem. Soc.
2004,
126:
12907
<A NAME="RG24008ST-15A">15a</A>
Hiyama T. In Metal-Catalyzed
Cross-Coupling Reactions
Diederich F.
Stang JP.
Wiley-VCH;
Weinheim:
1998.
<A NAME="RG24008ST-15B">15b</A>
Babudri F.
Farinola GM.
Lopez
LC.
Mattinelli MG.
Naso F.
J. Org. Chem.
2001,
66:
3878
<A NAME="RG24008ST-15C">15c</A>
Hiyama T. In Handbook of Organopalladium Chemistry for
Organic Synthesis
Vol. 1:
Negishi E.
Wiley Interscience;
New
York:
2002.
p.285
<A NAME="RG24008ST-15D">15d</A>
Prukaa W.
Majchrzak M.
Pietraszuk C.
Marciniec B.
J. Mol. Catal. A: Chem.
2006,
254:
58
<A NAME="RG24008ST-16A">16a</A>
Marciniec B.
Zaidlewicz M.
Pietraszuk C.
Kownacki I.
Comprehensive Organic Functional Group Transformations II
Katritzky AR.
Taylor RJK.
Elsevier;
Amsterdam:
2005.
<A NAME="RG24008ST-16B">16b</A>
Marciniec B.
Coord. Chem.
Rev.
2005,
249:
2374
<A NAME="RG24008ST-16C">16c</A>
Marciniec B.
Acc.
Chem. Res.
2007,
40:
943
<A NAME="RG24008ST-17">17</A>
Typical Procedure
for the Synthesis of 1,3-Bis[(
E
)-4-halostyryl]disiloxanes: The
glass reactor (10-mL, two-necked, round-bottomed flask equipped
with a magnetic stirring bar, reflux condenser, argon bubbling tube
and thermostated oil bath) was evacuated and flushed with argon. [RuH(Cl)(CO)(PPh3)3] (47.6
mg, 0.05 mmol), 1,3-divinyltetramethyldisiloxane (0.5 g, 2.5 mmol),
styrene or
4-bromo(or chloro)styrene (10 mmol) and anhyd
dioxane (5 mL) were added to the reactor. Then the reaction
mixture was stirred and heated at 100 ˚C under argon flow.
After 5 min, copper(I) chloride (CuCl; 9.9 mg, 0.1 mmol)
was added as a co-catalyst. The synthesis process was carried out for
the next 16 h. After the reaction was completed (GC-MS analysis)
the volatiles were evaporated under vacuum and the crude product
was chromatographed on silica gel (eluent: hexane-EtOAc,
10:1) to afford the analytically pure products.
1,3-Bis[(
E
)-4-bromostyryl]tetramethyldisiloxane (2): mp 56-60 ˚C. IR
(KBr): 799.5, 844.8, 985.3, 1055.5, 1253.5, 1485.7, 1604.6, 2956.9,
3020.3 cm-¹. ¹H
NMR (CDCl3): δ = 0.24 (s, 12 H, SiMe),
6.41 (d, J = 19.1 Hz, 2 H, SiCH=),
6.86 (d, J = 19.2 Hz, 2 H, PhCH=), 7.27 (d, J = 7.6
Hz, 4 H, BrC6H4), 7.43 (d, J = 8.3
Hz, 4 H, BrC6H4). ¹³C
NMR (CDCl3): δ = 0.9, 121.9, 127.9,
129.4, 131.5, 136.9, 142.9. MS (EI): m/z (%rel. int.) = 496
(7) [M+], 415 (32), 297 (60), 133
(100), 117 (37), 73 (50). HRMS: m/z [M+] calcd
for C20H24
79Br8¹BrOSi2:
495.9712; found: 495.9685.
1,3-Bis[(
E
)-4-chlorostyryl)tetramethyldisiloxane (3): mp 51-54 ˚C. IR
(KBr): 800.6, 845.1, 985.6, 1056.4, 1254.2, 1488.9, 1564.5, 1606.2,
2957.6, 3024.3 cm-¹. ¹H
NMR (CDCl3): δ = 0.25 (s, 12 H, SiMe),
6.40 (d, J = 19.2 Hz, 2 H, SiCH=),
6.88 (d, J = 19.2 Hz, 2 H, PhCH=), 7.28 (d, J = 8.8 Hz,
4 H, ClC6H4), 7.34 (d, J = 8.8
Hz, 4 H, ClC6H4). ¹³C NMR
(CDCl3): δ = 0.9, 127.6, 128.6, 129.2,
133.7, 136.5, 142.8. MS (EI): m/z (%rel. int.) = 406
(21) [M+], 281 (90), 253 (100),
227 (59), 133 (98), 117 (62), 73 (98). HRMS:
m/z [M+] calcd
for C20H24
³5Cl2OSi2:
406.0743; found: 406.0746.
<A NAME="RG24008ST-18">18</A>
Synthesis of PPV
from 1,3-Bis[(
E
)-4-bromostyryl]tetramethyldisiloxane: [Pd2
(dba)3] (9.16
mg, 0.01 mmol), dioxane (4 mL), 1,3-bis[(E)-4-bromostyryl]tetramethyldisiloxane
(2; 248 mg, 0.5 mmol), and tetrabutylammonium
fluoride (320 mg, 1.2 mmol) were placed in an evacuated and flushed
with argon, 10-mL flask. The mixture was heated at 80 ˚C
for 12 h under an argon atmosphere. The degree of conversion of
the substrates was estimated by GC and TLC analyses. Then the reaction mixture
was cooled and the precipitated solid was filtered and washed extensively
with acetone.
<A NAME="RG24008ST-19">19</A>
Typical Procedure
for the One-Pot Synthesis of 1,3,5-Tris- or 1,2,4,5-Tetrakis[(
E
)-4-halostyryl)benzenes
and Spectroscopic Data of Selected Products: The glass reactor
(10-mL, two-necked, round-bottomed flask equipped with a magnetic
stirring bar, reflux condenser, argon bubbling tube and thermostated
oil bath) was evacuated and flushed with argon. [RuH(Cl)(CO)(PPh3)3] (9.52
mg, 0.01 mmol), 1,3-divinyltetramethyldisiloxane (0.1 g, 0.5 mmol),
styrene or 4-bromo(or chloro)styrene (2.0 mmol) and anhyd dioxane
(2 mL) were added to the reactor. Then the reaction mixture was
stirred and heated at 100 ˚C under argon flow. After 5
min, CuCl (1.98 mg, 0.02 mmol) was added as a co-catalyst. The synthesis
process was carried out for the next 24 h. After the reaction was completed
(GC-MS or GC and TLC analyses), palladium catalyst [Pd2
(dba)3] (9.16
mg, 0.01 mmol), TBAF (320 mg, 1.2 mmol), dioxane (3 mL) and respective
haloarene [1,3,5-tribromobenzene (78.7 mg, 0.25 mmol) or
1,2,4,5-tetra-iodobenzene (116 mg, 0.2 mmol)] were added
and the mixture was heated at 80 ˚C (30 ˚C for
1,2,4,5-tetra-iodobenzene) for 16-48 h under an argon
atmosphere. The degree of conversion of the substrates was estimated
by GC and TLC analyses. The final product was separated using chromatography
column with silica (THF-EtOAc).
1,3,5-Tris[(
E
)-4-chlorostyryl]benzene (6): mp 216-220 ˚C. IR
(KBr): 806.3, 841.7, 960.2, 1090.4, 1490.7, 1585.1, 1668.2, 2924.2,
2957.7, 3024.9 cm-¹. ¹H
NMR (CDCl3): δ = 7.09 (d, J = 15.9 Hz, 3 H, C6H3CH=), 7.20-7.45 (m,
15 H, ClC6H4CH=), 7.65 (s, 3 H, C6H3). ¹³C
NMR (CDCl3): δ = 124.8, 125.4, 127.6,
128.1, 128.8, 133.3, 135.5, 137.7. MS (EI): m/z (%rel. int.) = 486
(8) [M+], 364 (56), 350 (47),
220 (49), 205 (100), 73 (57). HRMS: m/z [M+] calcd
for C30H21
³5Cl3:
486.0709; found: 486.0694.
1,2,4,5-Tetrakis[(
E
)-4-bromostyryl]benzene (8): mp 265-268 ˚C. IR
(KBr): 798.9, 845.4, 956.6, 1008.5, 1072.1, 1258.5, 1487.9, 1587.4,
1682.4, 1725.1, 2924.1, 2957.9, 3049.3 cm-¹. ¹H
NMR (THF-d
8): δ = 7.19
(d, J = 16.0 Hz, 4 H,
C6H2CH=),
7.50-7.58 (m, 16 H, BrC6H4), 7.67
(d, J = 16.1 Hz, 4 H, BrC6H4CH=), 7.98 (s, 2 H, C6H2). ¹³C
NMR (THF-d
8): δ = 121.9,
125.0, 127.2, 129.1, 130.9, 132.4, 136.3, 137.6. MS (EI): m/z (%rel.
int.) = 802 (5) [M+],
633 (14), 308 (20), 196 (32), 185 (64), 91 (95), 57 (100). Anal. Calcd
for C38H26Br4: C, 56.89; H, 3.27.
Found: C, 56.58; H, 3.03.
1,2,4,5-Tetrakis[(
E
)-4-chlorostyryl]benzene (9): mp 242-246 ˚C. IR
(KBr): 808.2, 853.3, 960.3, 1012.2, 1091.7, 1492.4, 1592.4, 1667.7,
1686.8, 2924.6, 2955.8, 3027.2 cm-¹. ¹H
NMR (C6D6): δ = 6.96 (d, J = 16.2 Hz, 4 H, C6H2CH=), 7.06-7.17 (m,
16 H, ClC6H4), 7.44 (d, J = 16.2 Hz,
4 H, ClC6H4CH=),
7.87 (s, 2 H, C6H2). ¹³C
NMR (C6D6): δ = 126.4, 127.1,
129.3, 129.7, 130.2, 134.2, 136.1, 138.9. MS (EI, %rel.
int.): m/z = 622
(6) [M+], 248 (32), 178 (51), 139
(68), 125 (100). Anal. Calcd for C38H26Cl4:
C, 73.09; H, 4.20. Found: C, 72.81; H, 4.01.