Synlett 2009(2): 330-331  
DOI: 10.1055/s-0028-1083571
SPOTLIGHT
© Georg Thieme Verlag Stuttgart ˙ New York

Phenyltrimethylammonium Tribromide: A Versatile Reagent in Organic Synthesis

Hong-Yan Lü*
The College of Chemistry & Material Science, Hebei Normal ­University, Shijiazhuang 050016, P. R. of China
e-Mail: hbhongyanlv@sina.com.cn;
Further Information

Publication History

Publication Date:
15 January 2009 (online)

Introduction

Phenyltrimethylammonium tribromide (PTAB) is known to be a convenient oxidizing and brominating agent. It is an orange crystal and easy to handle, with a melting point at 113-115 ˚C. [¹] It has been used for the oxidative transformation of trans-stilbene oxide to 2-phenyl-1,3-dioxane in the presence of various of 1,3-diols and a catalytic amount of SbBr3, [²] for brominating the α-position of carbonyl compounds, [³-8] α′-bromination of α,β-unsaturated ketones, [9] and for the addition of bromine to alkenes. [¹0] It was also found to be useful for the chemoselective conversion of 3-alkoxyfurans to 2-alkoxy-3(2H)-furanones, oxidative ring-opening of 3-alkoxy-2,5-diphenylfurans to cis-2-alkoxy-2-butene-1,4-diones, [¹¹] and synthesis of imidazolines, [¹²] 3-bromo-2-styrylchromones, [¹³] nitro dibromo-phenols, [¹4] pyridazines, [¹5] phytoalexin cyclobrassinin, [¹6] p-bromo­dienone calixarene derivatives, [¹7] and 2-arylthia­zino[5,6-b]indoles. [¹8]

Phenyltrimethylammonium tribromide is commercially available now. It can be readily prepared from N,N-di­methylaniline and dimethyl sulfate, followed by treatment with 48% hydrobromic acid and bromine. [¹]

Scheme 1

    References

  • 1 Jacques J. Marquet A. Org. Synth.  1988,  Coll. 6:  175 
  • 2 Sayama S. Tetrahedron Lett.  2006,  47:  4001 
  • 3 Sawa M. Mizuno K. Harada H. Tateishi H. Arai Y. Suzuki S. Oue M. Tsujiuchi H. Furutani Y. Kato S. Bioorg. Med. Chem. Lett.  2005,  15:  1061 
  • 4 Javed T. Kahlon SS. J. Heterocyclic Chem.  2002,  39:  627 
  • 5 Sukdolak S. Solujić S. Manojlović N. Vuković N. Krstić L. J. Heterocyclic Chem.  2004,  41:  593 
  • 6 Baldwin JE. Fryer AM. Pritchard GJ. J. Org. Chem.  2001,  66:  2588 
  • 7 Juo W.-J. Lee T.-H. Liu W.-C. Ko S. Chittimalla SK. Rao CP. Liao C.-C. J. Org. Chem.  2007,  72:  7992 
  • 8 Vasquez-Martinez Y. Ohri RV. Kenyon V. Holman TR. Sepúlveda-Boza S. Bioorg. Med. Chem.  2007,  15:  7408 
  • 9 Miranda Moreno MJS. Sá e Melo ML. Campos Neves AS. Synlett  1994,  651 
  • 10 Spadoni G. Bedini A. Guidi T. Tarzia G. Lucini V. Pannacci M. Fraschini F. ChemMedChem  2006,  1:  1099 
  • 11 Sayama S. Heterocycles  2005,  65:  1347 
  • 12 Sayama S. Synlett  2006,  1479 
  • 13 Santos CMM. Silva AMS. Cavaleir JAS. Synlett  2007,  3113 
  • 14 Ballini R. Barboni L. Giarlo G. Palmieri A. Synlett  2006,  1956 
  • 15 Attanasi OA. Filipone P. Fiorucei C. Mantellini F. Synlett  1997,  1361 
  • 16 Csomós P. Fodor L. Sohár P. Bernáth G. Tetrahedron  2005,  61:  9257 
  • 17 Gaeta C. Martino M. Neri P. Tetrahedron Lett.  2003,  44:  9155 
  • 18 Csomós P. Fodor L. Mándity I. Bernáth G. Tetrahedron  2007,  63:  4983 
  • 19 Sayama S. Onami T. Synlett  2004,  2369 
  • 20 Rábai J. Kapovits I. Tanács B. Tamás J. Synthesis  1990,  847 
  • 21 Sayama S. Synth. Commun.  2007,  37:  3067 
  • 22 Visweswariah S. Orakash G. Bhushan V. Chandrasekaran S. Synthesis  1982,  309 
  • 23 Dauban P. Dodd RH. Tetrahedron Lett.  2001,  42:  1037 
  • 24 Kaiser HM. Lo WF. Riahi AM. Spannenberg A. Beller M. Tse MK. Org. Lett.  2006,  8:  5761 
  • 25 Jing H. Chang T. Jin L. Wu M. Qiu W. Catal. Commun.  2007,  8:  1630 
  • 26 Jin L. Jing H. Chang T. Bu X. Wang L. Liu Z. J. Mol. Catal. A: Chem.  2007,  261:  262