Synlett 2008(18): 2815-2820  
DOI: 10.1055/s-0028-1083547
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Five- and Six-Membered-Ring Compounds by Environmentally Friendly Radical Cyclizations Using Kolbe Electrolysis

Frédéric Lebreux, Ferdinando Buzzo, István E. Markó*
Département de Chimie, Université catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
Fax: +32(10)474168; e-Mail: istvan.marko@uclouvain.be;
Further Information

Publication History

Received 30 April 2008
Publication Date:
15 October 2008 (online)

Abstract

Substituted carbocycles, tetrahydrofurans, and tetrahydropyrans can be efficiently obtained from ω-unsaturated carboxylic acids. Our methodology involves a Kolbe decarboxylation followed by an intramolecular radical cyclization and a radical-­radical cross-coupling process.

    References and Notes

  • 1a Giese B. Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds   Pergamon; Oxford: 1986. 
  • 1b Curran DP. In Comprehensive Organic Synthesis   4:  Trost BM. Fleming I. Semmelhack MF. Pergamon; Oxford: 1991.  p.715 
  • 1c Beckwith ALJ. Chem. Soc. Rev.  1993,  143 
  • 2a Rossi RA. Penenory AB. Curr. Org. Synth.  2006,  3:  121 
  • 2b Majumdar KC. Basu PK. Chattopadhyay SK. Tetrahedron  2006,  63:  793 
  • 2c Walton JC. Top. Curr. Chem.  2006,  264:  163 
  • 3a Davies AG. J. Chem. Res.  2006,  3:  141 
  • 3b Büchi G. Wüst H. J. Org. Chem.  1979,  44:  546 
  • 3c Stork G. Mook R. J. Am. Chem. Soc.  1983,  105:  3720 
  • 4a Danishefsky S. Chackalamannil S. Uang B.-J. J. Org. Chem.  1982,  47:  2231 
  • 4b Corey E. Shih C. Shih N.-Y. Shimoji K. Tetrahedron Lett.  1984,  25:  5013 
  • 5a Chatgilialoglu C. Ferreri C. Gimisis T. The Chemistry of Organic Silicon Compounds   Vol. 2:  Rappoport S. Apeloig Y. Wiley; London: 1998.  p.1539 
  • 5b Arya P. Samson C. Lesage M. Griller D. J. Org. Chem.  1990,  55:  6248 
  • 5c Gandon LA. Russell AG. Guveli T. Brodwolf AE. Kariuki BM. Spencer N. Snaith JS. J. Org. Chem.  2006,  71:  5198 
  • 5d Varlamov VT. Denisov ET. Chatgilialoglu C. J. Org. Chem.  2001,  66:  6317 
  • 5e Wnuk SF. Garcia PI. Wang Z. Org. Lett.  2004,  6:  2047 
  • 6a Zard SZ. Angew. Chem., Int. Ed. Engl.  1997,  36:  673 
  • 6b Walter W. Bode KD. Angew. Chem., Int. Ed. Engl.  1967,  6:  281 
  • 7a Grimshaw J. Electrochemical Reactions and Mechanisms in Organic Chemistry   Elsevier Science; Amsterdam: 2000. 
  • 7b Duñach EA. Esteves P. Freitas AM. Medeiros MJ. Olivero S. Tetrahedron Lett.  1999,  40:  8693 
  • 7c Toyota M. Ilangovan A. Kashiwagi Y. Ihara M. Org. Lett.  2004,  6:  3629 
  • 7d Torii S. Inokuchi T. Yukawa T. J. Org. Chem.  1985,  50:  5875 
  • 7e Miranda JA. Wade CJ. Little RD. J. Org. Chem.  2005,  70:  8017 
  • 8a Duñach E. Esteves AP. Medeiros MJ. Olivero S. Tetrahedron Lett.  2004,  45:  7935 
  • 8b Toyota M. Ilangovan A. Kashiwagi Y. Ihara M. Org. Lett.  2004,  6:  3629 
  • 8c Torii S. Inokuchi T. Yukawa T. J. Org. Chem.  1985,  50:  5875 
  • 9a Scheffold R. In Transition Metals in Organic Synthesis   Scheffold R. Wiley; New York: 1983.  p.355 
  • 9b Scheffold R. Dike M. Dike S. Herold T. Walder L. J. Am. Chem. Soc.  1980,  102:  3642 
  • 9c Scheffold R. Abrecht S. Orlinski R. Ruf H.-R. Stamouli P. Tinembart O. Walder L. Weymuth C. Pure Appl. Chem.  1987,  59:  363 
  • 10a Utley J. Chem. Soc. Rev.  1997,  26:  157 
  • 10b Torii S. Tanaka H. In Organic Electrochemistry   4th ed:  Lund H. Hammerich O. Marcel Dekker; New York: 2001.  p.499 
  • For the preparation of Kolbe dimers, see:
  • 11a Brown AC. Walker J. Justus Liebigs Ann. Chem.  1891,  261:  107 
  • 11b Fichter F. Lurie S. Helv. Chim. Acta  1933,  16:  885 
  • For Kolbe cross-coupling reactions, see:
  • 12a Seebach D. Renaud P. Helv. Chim. Acta  1985,  68:  2342 
  • 12b Kubota T. Aoyagi R. Sando H. Kawasumi M. Tanaka T. Chem. Lett.  1987,  1435 
  • 13a Garwood RF. Weedon BCL. J. Chem. Soc., Perkin Trans. 1  1973,  2714 
  • 13b Weiguny J. Schäfer HJ. Electroorg. Synth.  1993,  57:  235 
  • 13c Matzeit A. Schäfer H. Amatore C. Synthesis  1995,  1432 
  • Although a radical adsorbed on an electrode surface might display altered behavior, we believe that the slightly nucleophilic character of the alkyl radical 3 is preserved. See, for example:
  • 14a Chkir M. Lelandais D. J. Chem. Soc., Chem. Commun.  1971,  1369 
  • 14b Giese B. Angew. Chem., Int. Ed. Engl.  1983,  22:  753 
  • For a scale measuring the nucleophilicity of radicals, see:
  • 14c De Vleeschouwer F. Van Speybroeck V. Waroquier M. Geerlings P. De Proft F. Org. Lett.  2007,  9:  2721 
  • 15 Heinhorn J. Soulier J.-L. Bacquet C. Lelandais D. Can. J. Chem.  1983,  61:  584 
16

Representative Procedure for the Electrochemical Synthesis of Carbocycles and Heterocycles
In an undivided beaker-type cell (100 mL) bearing two electrodes of platinum foil (1.3 cm × 1.3 cm × 0.5 mm), acid 22a (500 mg, 2.47 mmol) and a fivefold excess of AcOH (707 mL, 12.38 mmol) were dissolved in MeOH (50 mL). The acids were partially neutralized by NaOMe to obtain a current density of 100 mA/cm². The reaction was monitored by TLC or GC and stopped when the pH of the solution changed from 5 to 8; normally 1.2-1.4 F/mol had been consumed. The reaction mixture was then concentrated under reduced pressure. The residue was treated with a sat. aq solution of NaHCO3, and extracted with CH2Cl2 (3 × 10 mL). The organic layers were collected, dried on Na2SO4, and concentrated under reduced pressure. The crude material was purified by flash chromatography (PE-Et2O, 4:1) to afford 366 mg of compound 23a (86%, mixture of two inseparable diastereomers, A/B = 1:1) as a colorless liquid smelling of fruit. GC [60 ˚C (3 min), 15 ˚C/min → 290 ˚C, 290 ˚C (1 min)]: t R = 10.90, 11.02 min. IR (neat): 647, 732, 915, 1047, 1076, 1179, 1262, 1377, 1459, 1725, 2873, 2978. ¹H NMR (300 MHz, CDCl3): δ = 1.15 (d, 3 H, A, J = 6.6 Hz), 1.20 (d, 3 H, B, J = 6.6 Hz), 1.24 (t, 3 H, A, J = 7.2 Hz), 1.26 (t, 3 H, B, J = 7.2 Hz), 1.50-1.65 (m, 1 H, A + B), 1.95-2.20 (m, 1 H, A + B), 2.25-2.55 (m, 2 H, A + B), 3.40-3.46 (dt, 1 H, A + B, J = 7.8, 2.2 Hz), 3.60-3.95 (m, 3 H, A + B), 4.08-4.18 (m, 2 H, A + B). ¹³C NMR (75 MHz, CDCl3): δ = 14.20 (A), 14.23 (B), 16.1 (A), 16.2 (B), 30.3 (B), 30.8 (A), 42.39 (A), 42.41 (B), 42.90 (B), 42.93 (A), 60.4 (A + B), 68.0 (A), 68.1 (B), 71.1 (A), 71.9 (B), 175.7 (A + B). MS (APCI): m/z (%) = 82.9 (15), 126.9 (95), 144.9 (15), 173.0(10). HRMS (sodium complex): m/z calcd: 195.0997; found: 195.0998.

17

Compound 27 originates from a possible rearrangement of either the primary radical or the derived carbocation. Studies are currently ongoing to elucidate this intriguing transformation.