Synlett 2008(17): 2674-2680  
DOI: 10.1055/s-0028-1083529
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A New One-Pot, Three-Component Synthesis of 2,3,5-Substituted or Annulated-6-(Methylthio)pyridines

A. K. Yadav, S. K. S. Yadav, I. Siddiqui, S. Peruncheralathan, H. Ila*, H. Junjappa
Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
Fax: +91(512)2597436; e-Mail: hila@iitk.ac.in;
Further Information

Publication History

Received 7 June 2008
Publication Date:
01 October 2008 (online)

Abstract

A new one-pot, three-component synthesis of 2,3,5-substituted (or 2,3-annulated)-6-(methylthio)pyridines by reacting acyclic or cyclic active methylene ketones, ammonium acetate, and bis(methylthio)acrolein (1) or its 2-phenyl analogue 8 (as 3-carbon-1,3-biselectrophilic components) in the presence of either AcOH-TFA (4:1) or ZnBr2 (or ZnI2) catalysts has been reported.

    References and Notes

  • 1a Balasubramaniam M. Keay JG. In Comprehensive Heterocyclic Chemistry II   Vol. 5:  Katritzky AR. Rees CW. Scriven EFV. Pergamon Press; Oxford: 1996.  Chap. 5.06. p.245 
  • 1b Michael JP. Nat. Prod. Rep.  1997,  14:  605 
  • 2 Review: Henry GD. Tetrahedron  2004,  60:  6043 ; and references therein
  • 3 Matolcsy G. Pesticide Chemistry   Elsevier Scientific; Amsterdam / Oxford: 1998.  p.427-430  
  • 4a Pharmaceutical Chemistry. Drug Synthesis   Vol 1:  Roth HJ. Kleeman A. Prentice Hall Europe; London: 1988.  p.407 
  • 4b

    MDDR; MDL Drug Data Registry; by MDL Informations System, Inc; San Leandro, California USA.

  • 5 Li A.-H. Moro S. Forsyth N. Melman N. Ji X.-D. Jacobson KA. J. Med. Chem.  1999,  42:  706 
  • 6 Scriven E. Berry D. Speciality Chem. Mag.  2001,  May 24 
  • 7a Heller M. Schubert US. Eur. J. Org. Chem.  2003,  947 
  • 7b Kozhevnikov VN. Kozhevnikov DN. Nikitina TV. Rusinov VL. Chupakhin OL. Zabel M. König B. J. Org. Chem.  2003,  68:  2882 
  • 7c Branowska D. Synthesis  2003,  2096 ; and references therein
  • 8a Fischer M. Troschutz R. Synthesis  2003,  1603 
  • 8b Keuper R. Risch N. Eur. J. Org. Chem.  1998,  2609 
  • 8c Risch N. Esser A. Synthesis  1988,  337 
  • 8d Sharma U. Ahmed S. Boruah RC. Tetrahedron Lett.  2000,  41:  3493 
  • 8e Chetia A. Longchar M. Lekhok KC. Boruah RC. Synlett  2004,  1309 
  • 8f Ramesh SS. Douglas DY. Alexander D. Chem. Commun.  2006,  1313 
  • 9a Hedge VB. Renga JM. Owen JM. Tetrahedron Lett.  2001,  42:  1847 
  • 9b Thomas AD. Asokan CV. Tetrahedron Lett.  2002,  43:  2273 
  • 9c Bhandari A. Li B. Gallop MA. Synthesis  1999,  1951 
  • 9d Parthasarathy K. Jeganmohan M. Cheng C.-H. Org. Lett.  2008,  10:  325 
  • 9e Kase K. Goswami A. Ohtaki K. Tanabe E. Saino N. Okamoto S. Org. Lett.  2007,  9:  991 
  • 9f Lu J.-Y. Arndt H.-D. J. Org. Chem.  2007,  72:  4205 
  • 9g Gehre A. Stanforth SP. Tarbit B. Tetrahedron Lett.  2007,  48:  6974 
  • 10a Moody CJ. Bagley MC. Synlett  1998,  361 
  • 10b Moody CJ. Bagley MC. Chem. Commun.  1998,  2049 
  • 10c Bagley MC. Bashford KE. Hesketh CL. Moody CJ. J. Am. Chem. Soc.  2000,  122:  3301 
  • 10d Bagley MC. Dale JW. Xiong X. Bower J. Org. Lett.  2003,  5:  4421 
  • 11 Bashford KE. Burton MB. Cameron S. Cooper AL. Hogg RD. Kane PD. MacManus DA. Matrunola CA. Moody CJ. Robertson AAB. Warne MR. Tetrahedron Lett.  2003,  44:  1627 
  • 12a Bagley MC. Dale JW. Bower J. Synlett  2001,  1149 
  • 12b Bagley MC. Dale JW. Hughes DD. Ohnesorge M. Phillips NG. Bower J. Synlett  2001,  1523 
  • 12c Bagley MC. Singh N. Synlett  2002,  1718 
  • 12d Bagley MC. Hughes DD. Sabo HM. Taylor PH. Xiong X. Synlett  2003,  1443 
  • 12e Xiong X. Bagley MC. Chapaneri K. Tetrahedron Lett.  2004,  45:  6121 
  • 12f Bagley MC. Brace C. Dale JW. Ohnesorge M. Phillips NG. Xiong X. Bower J. J. Chem. Soc., Perkin Trans. 1  2002,  1663 
  • 12g Xiong X. Bagley MC. Chapaneri K. Tetrahedron Lett.  2004,  45:  6121 
  • 12h Bagley MC. Glover C. Chevis D. Synlett  2005,  649 
  • 12i Bagley MC. Glover C. Merritt EA. Xiong X. Synlett  2004,  811 
  • 13a Review: Bagley MC. Glover C. Merritt EA. Synlett  2007,  2459 
  • 13b Bagley MC. Dale JW. Bower J. Chem. Commun.  2002,  1682 
  • 13c Bagley MC. Chapaneri K. Dale JW. Xiong X. Bower J. J. Org. Chem.  2005,  70:  1389 
  • 13d Bagley MC. Dale JW. Bower J. Chem. Commun.  2002,  1682 
  • 13e Merritt EA. Bagley MC. Synlett  2007,  954 
  • 14 Adlington RM. Baldwin JE. Catterick D. Pritchard GJ. Tang LT. J. Chem. Soc., Perkin Trans. 1  2000,  2311 ; and references therein
  • 15a Marcoux J.-F. Corley EG. Rossen K. Pye P. Wu J. Robbins MA. Davies IW. Larsen RD. Reider PJ. Org. Lett.  2000,  2:  2339 
  • 15b Davies IW. Marcoux J.-F. Reider PJ. Org. Lett.  2001,  3:  209 
  • 15c Davies IW. Marcoux J.-F. Corley EG. Journet M. Cai D.-W. Palucki M. Wu J. Larsen RD. Rossen K. Pye PJ. DiMichele L. Dormer P. Reider PJ. J. Org. Chem.  2000,  65:  8415 
  • 16 Review: Lloyd D. McNab H. Angew. Chem., Int. Ed. Engl.  1976,  15:  459 
  • 17a Katritzky AR. Belyakov SA. Sorochinsky AE. Henderson SA. Chen J. J. Org. Chem.  1997,  62:  6210 
  • 17b Katritzky AR. Abdel-Fattah AAA. Tymoshenko DO. Essawy SA. Synthesis  1999,  2114 
  • Reviews:
  • 18a Ila H. Junjappa H. Mohanta PK. In Progress in Heterocyclic Chemistry   Vol. 13:  Gribble GW. Gilchrist TL. Pergamon; Oxford: 2001.  Chap. 1. p.1 
  • 18b Junjappa H. Ila H. Asokan CV. Tetrahedron  1990,  46:  5423 
  • 18c Junjappa H. Ila H. Phosphorus, Sulfur Silicon Relat. Elem.  1994,  95:  35 
  • 18d Ila H. Junjappa H. Barun O. J. Organomet. Chem.  2001,  624:  34 
  • Recent papers:
  • 19a Kumar S. Ila H. Junjappa H. Tetrahedron  2007,  63:  10067 
  • 19b Misra NC. Panda K. Ila H. Junjappa H. J. Org. Chem.  2007,  72:  1246 
  • 19c Peruncheralathan S. Khan TA. Ila H. Junjappa H.
    J. Org. Chem.  2005,  70:  10030 
  • 19d Venkatesh C. Singh B. Mahata PK. Ila H. Junjappa H. Org. Lett.  2005,  7:  9644 
  • 19e Panda K. Venkatesh C. Ila H. Junjappa H. Eur. J. Org. Chem.  2005,  2045 
  • 19f Peruncheralathan S. Khan TA. Ila H. Junjappa H. Tetrahedron  2004,  60:  3457 
  • 19g Sundarum GSM. Venkatesh C. Syam Kumar UK. Ila H. Junjappa H. J. Org. Chem.  2004,  69:  5760 
  • 20a Gupta AK. Ila H. Junjappa H. Tetrahedron  1990,  46:  3703 
  • 20b Satyanarayana J. Ila H. Junjappa H. Synthesis  1991,  889 
  • 21a Gupta AK. Ila H. Junjappa H. Tetrahedron Lett.  1988,  29:  6633 
  • 21b Gupta AK. Ila H. Junjappa H. Tetrahedron  1990,  46:  2572 
  • 22a Potts KT. Cipullo MJ. Ralli P. Theodoridis G.
    J. Am. Chem. Soc.  1981,  103:  3584 
  • 22b Potts KT. Cipullo MJ. Ralli P. Theodoridis G. J. Org. Chem.  1982,  47:  3027 
  • 23 Mahata PK. Barun O. Ila H. Junjappa H. Synlett  2000,  1345 
  • 24 Panda K. Siddiqui I. Mahata PK. Ila H. Junjappa H. Synlett  2004,  449 
  • 27 Rudorf WD. J. Prak. Chem.  1986,  328:  321 
25

The structures of all newly synthesized compounds were confirmed with the help of spectral and analytical data.

26

General Procedure for One-Pot, Three-Component Synthesis of 2,3,5-Substituted or 2,3-Annulated-6-(methylthio)pyridines 4, 7, 9, and 10cProcedure A A solution of appropriate ketone (1.0 mmol), bis(methyl-thio)acrolein (1, 3.0 mmol) or 2-phenyl-3-bis(methyl-thio)acrolein (8, 1.1 mmol), and NH4OAc (20 mol) in AcOH-TFA (5 mL, 4:1) was heated with stirring at 110 ˚C for 8-10 h (monitored by TLC). The mixture was then neutralized with sat. NaHCO3 solution (25 mL) and extracted with CH2Cl2 (3 × 15 mL). The combined organic extracts were washed with H2O (2 × 50 mL), brine (50 mL), dried (Na2SO4), and evaporated under reduced pressure to afford crude product which was purified by column chromatography over SiO2 using EtOAc-hexane (1:9) as eluent.
Procedure B
A mixture of appropriate ketone (1.0 mmol), bis(methyl-thio)acrolein (1, 3.0 mmol) or 2-phenyl-3-bis(methyl-thio)acrolein (8, 1.1 mmol), NH4OAc (20 mol), and ZnBr2 or ZnI2 (15 mol%) was heated in a sealed tube at 110 ˚C for
5-8 h (monitored by TLC). The residue was partitioned between sat. NaHCO3 solution (30 mL) and CHCl3 (30 mL), and was extracted with CH2Cl2 (3 × 15 mL). The organic layer was washed with H2O (2 × 50 mL), brine (50 mL), dried (Na2SO4), and evaporated under reduced pressure to give crude product which was purified by column chromatography on SiO2 using EtOAc-hexane (1:9) as eluent.
2-(4-Methoxyphenyl)-6-methylthiopyridine (4a)
Yield 63% (0.15 g); white solid; mp. 81-82 ˚C; R f = 0.52 (hexane-EtOAc, 9:1). IR (KBr): 2919, 1602, 1555, 1448 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.99 (d, J = 9.0 Hz, 2 H, ArH), 7.49 (t, J = 7.8 Hz, 1 H, ArH), 7.35 (d, J = 7.6 Hz, 1 H, ArH), 7.05 (d, J = 7.8 Hz, 1 H, ArH), 6.92 (d, J = 8.8 Hz, 2 H, ArH), 3.85 (s, 3 H, OMe), 2.64 (s, 3 H, SMe). ¹³C NMR (100 MHz, CDCl3): δ = 160.5, 159.1, 156.2, 136.6, 131.3, 128.1, 119.2, 114.8, 114.0, 55.3, 13.2. ESI-HRMS: m/z calcd for C13H14NOS [M + H]+: 232.0796; found: 232.0794. 2,3-Bis(4-methoxyphenyl)-6-methylthiopyridine (4c)
Yield 63% (0.21 g); white solid; mp 161-162 ˚C; R f = 0.50 (hexane-EtOAc, 19.1). IR (KBr): 2950, 1684, 1509 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.49 (d, J = 8.1 Hz, 1 H, ArH), 7.35 (dd, J = 6.7, 2.1 Hz, 2 H, ArH), 7.14 (d, J = 8.3 Hz, 1 H, ArH), 7.07 (dd, J = 6.6, 2.2 Hz, 2 H, ArH), 6.74-6.81 (m, 4 H, ArH), 3.78 (s, 3 H, OMe), 3.77 (s, 3 H, OMe), 2.62 (s, 3 H, SMe). ¹³C NMR (100 MHz, CDCl3): δ = 159.7, 158.8, 157.5, 155.1, 139.7, 131.5, 131.4, 131.2, 130.5, 130.4, 119.3, 113.9, 113.3, 55.2, 55.1, 13.7. MS: m/z (%) = 337(100) [M+]. Anal. Calcd (%) for C20H19NO2S (337.43): C, 71.19; H, 5.68; N, 4.15. Found: C, 71.23; H, 5.70; N, 4.18.
2-Methylthioindeno[1,2- b ]pyridin-5-one (7a)
Yield 78% (0.18 g); pale yellow solid; mp 145-146 ˚C; R f = 0.54 (hexane-EtOAc, 9:1); IR (KBr): 2920, 1720, 1575, 1401 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.57 (d, J = 7.3 Hz, 1 H, ArH), 7.49 (d, J = 7.3 Hz, 1 H, ArH), 7.46 (d, J = 8.0 Hz, 1 H, ArH), 7.37 (t, J = 7.4 Hz, 1 H, ArH), 7.24 (t, J = 7.4 Hz, 1 H, ArH), 6.84 (d, J = 8.1 Hz, 1 H, ArH), 2.51 (s, 3 H, SMe). ¹³C NMR (100 MHz, CDCl3): δ = 191.1, 167.1, 165.1, 142.7, 135.0, 134.4, 130.7, 130.3, 123.5, 123.4, 120.5, 119.8, 13.3. MS: m/z (%) = 227(100) [M+]. Anal. Calcd (%) for C13H9NOS (227.28): C, 68.70; H, 3.99; N, 6.16. Found: C, 68.76; H, 4.00; N, 6.18.
6-Methylthio-3,5-diphenyl-[2,3′]bipyridinyl (9d)
Yield 64% (0.23 g); light yellow solid; mp 160-161 ˚C; R f = 0.45 (hexane-EtOAc, 5:1). IR (KBr): 2916, 1575, 1445, 1377 cm. ¹H NMR (400 MHz, CDCl3): δ = 8.77 (br s, 1 H, ArH), 8.50 (dd, J = 4.9, 1.4 Hz, 1 H, ArH), 7.71 (dt, J = 8.0, 1.9 Hz, 1 H, ArH), 7.55-7.52 (m, 2 H, ArH), 7.51 (s, 1 H, ArH), 7.50-7.40 (m, 3 H, ArH), 7.33-7.27 (m, 3 H, ArH), 7.23-7.20 (m, 2 H, ArH), 7.17-7.15 (m, 1 H, ArH), 2.60 (s, 3 H, SMe). ¹³C NMR (100 MHz, CDCl3): δ = 156.6, 151.4, 150.9, 148.7, 139.1, 138.9, 137.4, 137.1, 135.3, 135.0, 131.7, 129.5, 129.1, 128.7, 128.5, 128.4, 127.5, 122.6, 13.8. MS: m/z (%) = 355(100) [M + 1], 354(60) [M+]. Anal. Calcd (%) for C23H18N2S (354.46): C, 77.93; H, 5.12; N, 7.90. Found: 77.97; H, 5.13; N, 7.93.
6-Methylthio-5-phenyl-[2,2′]bipyridinyl (9i)
Yield 68% (0.19 g); colorless solid; mp 100-101 ˚C; R f = 0.47 (hexane-EtOAc, 19:1). IR (KBr): 2916, 1546, 1428, 1354 cm. ¹H NMR (400 MHz, CDCl3): δ = 8.71 (dd, J = 4.9, 0.74 Hz, 1 H, ArH), 8.54 (d, J = 8.1 Hz, 1 H, ArH), 8.27 (d, J = 7.8 Hz, 1 H, ArH), 7.88 (td, J = 7.7, 1.7 Hz, 1 H, ArH), 7.56 (d, J = 7.8 Hz, 1 H, ArH), 7.49-7.40 (m, 5 H, ArH), 7.37-7.34 (m, 1 H, ArH), 2.62 (s, 3 H, SMe). ¹³C NMR (100 MHz, CDCl3): δ = 157.3, 155.2, 152.9, 148.3, 137.8, 137.3, 136.5, 129.1, 128.4, 128.3, 123.9, 121.4, 116.5, 13.8. MS: m/z (%): 279(100) [M + 1], 278(30). Anal. Calcd (%) for C17H14N2S (278.37): C, 73.35; H, 5.07; N, 10.06. Found: C, 73.32; H, 5.09; N, 10.09.

28

Comparable yields of pyridines 9 were obtained by using either ZnBr2 or ZnI2 catalyst.

29

Lower yields of pyridines 4a-g with ZnBr2 (conditions B) catalyst at 110 ˚C are presumably due to the decomposition of bis(methylthio)acrolein(1) at higher temperature.

30

The ¹H NMR of all desulfurized compounds 11c,d, 12h,i displayed a low field signal between δ = 8.63-8.96 ppm due to the pyridine H-6 proton which further confirmed the regiochemistry of the products.
2,3-Bis(4-methoxyphenyl)pyridine (11c)
Yield 93% (0.27 g); white solid; mp 82-83 ˚C; R f = 0.5 (hexane-EtOAc, 19:1). IR (KBr): 2935, 2838, 1607, 1511, 1429 cm. ¹H NMR (400 MHz, CDCl3): δ = 8.63 (dd, J = 4.6, 1.7 Hz, 1 H, ArH), 7.67 (dd, J = 7.6, 1.7 Hz, 1 H, ArH), 7.31 (dd, J = 6.7, 2.1 Hz, 2 H, ArH), 7.29-7.26 (m, 1 H, ArH), 7.11 (dd, J = 6.7, 2.1 Hz, 2 H, ArH), 6.83 (dd, J = 6.8, 1.9 Hz, 2 H, ArH), 6.78 (dd, J = 6.8, 1.9 Hz, 2 H, ArH), 3.81 (s, 3 H, OMe), 3.79 (s, 3 H, OMe). ¹³C NMR (100 MHz, CDCl3): δ = 159.2, 158.8, 156.7, 147.9, 138.4, 135.3, 132.8, 132.5, 131.1, 130.6, 121.6, 113.8, 113.3, 55.22, 55.18. MS: m/z (%) = 292(100) [M + 1], 291(40) [M+]. Anal. Calcd (%) for C19H17NO2 (291.34): C, 8.33; H, 5.88; N, 4.81. Found: C, 78.39; H, 5.90; N, 4.84.