Synlett 2008(18): 2821-2822  
DOI: 10.1055/s-0028-1083498
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Formal Asymmetric Synthesis of (-)-Aphanorphine via Ring-Closing Metathesis Reaction

Xiaobao Yanga,b, Bin Chengb, Zhong Li*a, Hongbin Zhai*b
a Shanghai Key Laboratory of Chemical Biology, Institute of Pesticides and Pharmaceuticals, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. of China
b Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
e-Mail: zhaih@mail.sioc.ac.cn;
Further Information

Publication History

Received 15 July 2008
Publication Date:
15 October 2008 (online)

Abstract

We have developed an asymmetric route to (-)-aphanorphine from O-Me-d-tyrosine methyl ester hydrochloride salt, available from d-tyrosine in four steps. The tricyclic framework of (-)-aphanorphine was assembled stereoselectively by intramolecular Friedel-Crafts reaction of the corresponding bicyclic precursor, which was in turn generated via ring-closing metathesis reaction.

    References and Notes

  • 1 Gulavita N. Hori A. Shimizu Y. Laszlo P. Clardy J. Tetrahedron Lett.  1988,  29:  4381 
  • 2 Palmer DC. Strauss MJ. Chem. Rev.  1977,  77:  1 
  • 3 For a recent review, see: Zezula J. Hudlicky T. Synlett  2005,  388 
  • 4 Taylor SK. Ivanovic M. Simons LJ. Davis MM. Tetrahedron: Asymmetry  2003,  14:  743 ; and references cited therein
  • 5a Zhai H. Luo S. Ye C. Ma Y. J. Org. Chem.  2003,  68:  8268 
  • 5b Hu H. Zhai H. Synlett  2003,  2129 
  • 5c Ma Z. Zhai H. Synlett  2007,  161 
  • 5d Ma Z. Hu H. Xiong W. Zhai H. Tetrahedron  2007,  63:  7523 
  • 5e Yang X. Li Z. Zhai H. Org. Lett.  2008,  10:  2457 
  • For synthesis of (-)-aphanorphine, see:
  • 6a Takano S. Inomata K. Sato T. Takahashi M. Ogasawara K. J. Chem. Soc., Chem. Commun.  1990,  290 
  • 6b Hulme AN. Henry SS. Meyers AI. J. Org. Chem.  1995,  60:  1265 
  • 6c Hallinan KO. Honda T. Tetrahedron  1995,  51:  12211 
  • 6d Fadel A. Arzel P. Tetrahedron: Asymmetry  1995,  6:  893 
  • 6e Meyers AI. Schmidt W. Santiago B. Heterocycles  1995,  40:  525 
  • 6f Node M. Imazato H. Kurosaki R. Kawano Y. Inoue T. Nishide K. Fuji K. Heterocycles  1996,  42:  811 
  • 6g Shiotani S. Okada H. Nakamata K. Yamamoto T. Sekino F. Heterocycles  1996,  43:  1031 
  • 6h Shimizu M. Kamikubo T. Ogasawara K. Heterocycles  1997,  46:  21 
  • 6i Fadel A. Arzel P. Tetrahedron: Asymmetry  1997,  8:  371 
  • 6j Tamura O. Yanagimachi T. Kobayashi T. Ishibashi H. Org. Lett.  2001,  3:  2427 
  • 6k Tanaka K. Taniguchi T. Ogasawara K. Tetrahedron Lett.  2001,  42:  1049 
  • 6l ElAzab AS. Taniguchi T. Ogasawara K. Heterocycles  2002,  56:  39 
  • 6m Tamura O. Yanagimachi T. Ishibashi H. Tetrahedron: Asymmetry  2003,  14:  3033 
  • 6n Taylor SK. Ivanovic M. Simons LJ. Davis MM. Tetrahedron: Asymmetry  2003,  14:  743 
  • 6o Kita Y. Futamura J. Ohba Y. Sawama Y. Ganesh JK. Fujioka H. J. Org. Chem.  2003,  68:  5917 
  • 6p Bower JF. Szeto P. Gallagher T. Chem. Commun.  2005,  5793 
  • 6q Katoh M. Inoue H. Suzuki A. Honda T. Synlett  2005,  2820 
  • 6r Li M. Zhou P. Roth HF. Synthesis  2007,  55 
  • 6s Bower JF. Szeto P. Gallagher T. Org. Biomol. Chem.  2007,  5:  143 
  • 6t Grainger RS. Welsh EJ. Angew. Chem. Int. Ed.  2007,  46:  5377 
  • For the synthesis of (±)-aphanorphine, see:
  • 6u Honda T. Yamamoto A. Cui Y. Tsubuki M. J. Chem. Soc., Perkin Trans. 1  1992,  531 
  • 6v Fuchs JR. Funk RL. Org. Lett.  2001,  3:  3923 
  • For the synthesis of (+)-aphanorphine, see:
  • 6w Takano S. Inomata K. Sato T. Ogasawara K. J. Chem. Soc., Chem. Commun.  1989,  1591 
  • 7 For the synthesis of O-Me-d-tyrosine methyl ester hydrochloride salt(4), see: Hulme AN. Rosser EM. Org. Lett.  2002,  4:  265 
  • 8 For Swern oxidation, see: Anthory JM. Debra SB. Daniel S. J. Org. Chem.  1979,  44:  4148 
  • 9 Scholl M. Ding S. Lee CW. Grubbs RH. Org. Lett.  1999,  1:  953 
10

Compound 8: white solid; mp 136-138 ˚C (Lit.5a 137-138 ˚C); [α]D ²5 -16.9 (c 0.89, CHCl3) {Lit.5a [α]D ²0 -13.4 (c 0.97, CHCl3); Lit.5b [α]D ²0 -14.3 (c 0.93, CHCl3)}. ¹H NMR (300 MHz, CDCl3): δ = 1.41 (s, 3 H), 1.41-1.49 (m, 1 H), 1.79 (d, J = 11.1 Hz, 1 H), 2.43 (s, 3 H), 2.91-3.16 (m, 2 H), 3.03 (d, J = 8.4 Hz, 1 H), 3.41 (d, J = 8.7 Hz, 1 H), 3.80 (s, 3 H), 4.40 (t, J = 3.3 Hz, 1 H), 6.74 (dd, J = 8.4, 2.4 Hz, 1 H), 6.79 (d, J = 2.7 Hz, 1 H), 6.99 (d, J = 8.1 Hz, 1 H), 7.30 (d, J = 8.1 Hz, 2 H), 7.71 (d, J = 8.1 Hz, 2 H). ¹³C NMR (75.47 MHz, CDCl3): δ = 20.8, 21.6, 38.3, 41.8, 42.4, 55.4, 58.0, 63.1, 110.3, 111.9, 125.5, 127.3, 129.8, 130.6, 135.9, 143.4, 145.1, 158.2. ESI-MS: m/z = 380 [M + Na], 358 [M + H]. ESI-HRMS: m/z calcd for C20H23NO3S + H: 358.1477; found: 358.1473. ESI-HRMS: m/z calcd for C22H23NO3S + Na: 380.1296; found: 380.1308.