RSS-Feed abonnieren
DOI: 10.1055/s-0028-1083377
Organocatalytic Domino Mannich Aza-Michael Reactions towards the Stereoselective Synthesis of Highly Substituted Pipecolic Esters
Publikationsverlauf
Publikationsdatum:
01. Oktober 2008 (online)

Abstract
Readily available chiral 7-oxo-2-enimides have been converted into highly substituted pipecolic esters in moderate yields and excellent stereocontrol through a proline-catalyzed domino Mannich aza-Michael reaction.
Key words
aza-Michael reaction - Cope rearrangement - domino reaction - Mannich reaction - organocatalysis - pipecolic ester
- 1a
Schneider C.Rehfeuter M. Synlett 1996, 212Reference Ris Wihthout Link - 1b
Schneider C.Rehfeuter M. Tetrahedron 1997, 53: 133Reference Ris Wihthout Link - 1c
Schneider C. Synlett 2001, 1079Reference Ris Wihthout Link - 1d
Schneider C.Khaliel S. Synlett 2006, 1413Reference Ris Wihthout Link - For the application of the Cope products in organic synthesis, see:
- 2a
Schneider C. Synlett 1997, 815Reference Ris Wihthout Link - 2b
Schneider C.Schuffenhauer A. Eur. J. Org. Chem. 2000, 73Reference Ris Wihthout Link - 2c
Schneider C.Börner C. Synlett 1998, 652Reference Ris Wihthout Link - 2d
Schneider C.Börner C.Schuffenhauer A. Eur. J. Org. Chem. 1999, 3353Reference Ris Wihthout Link - 2e
Schneider C. Eur. J. Org. Chem. 1998, 1661Reference Ris Wihthout Link - 2f
Schneider C.Rehfeuter M. Tetrahedron Lett. 1998, 39: 9Reference Ris Wihthout Link - 2g
Schneider C.Rehfeuter M. Chem. Eur. J. 1999, 5: 2850Reference Ris Wihthout Link - 2h
Schneider C.Reese O. Angew. Chem. Int. Ed. 2000, 39: 2948 ; Angew. Chem. 2000, 112, 3074Reference Ris Wihthout Link - 2i
Schneider C.Reese O. Chem. Eur. J. 2002, 8: 2585Reference Ris Wihthout Link - 2j
Schneider C.Tolksdorf F.Rehfeuter M. Synlett 2002, 2098Reference Ris Wihthout Link - For leading recent reviews about organoenamine catalysis, see:
- 3a
Mukherjee S.Yang JW.Hoffmann S.List B. Chem. Rev. 2007, 107: 5471Reference Ris Wihthout Link - 3b
List B. Chem. Commun. 2006, 819Reference Ris Wihthout Link - 3c
List B. Acc. Chem. Res. 2004, 37: 548Reference Ris Wihthout Link - 3d
Notz W.Tanaka F.Barbas CF. III Acc. Chem. Res. 2004, 37: 580Reference Ris Wihthout Link - For a related aza-Diels-Alder reaction which proceeds by a domino Mannich aza-Michael mechanism, see:
- 4a
Sunden H.Ibrahem I.Eriksson L.Cordova A. Angew. Chem. Int. Ed. 2005, 44: 4877 ; Angew. Chem. 2005, 117, 4955Reference Ris Wihthout Link - 4b
Rueping M.Azap C. Angew. Chem. Int. Ed. 2006, 45: 7832 ; Angew. Chem. 2006, 118, 7996Reference Ris Wihthout Link - 5
Cordova A.Watanabe S.Tanaka F.Notz W.Barbas CF. III J. Am. Chem. Soc. 2002, 124: 1866 - For general reviews, see:
- 7a
Tietze LF.Brasche G.Gericke K. Domino Reactions in Organic Synthesis Wiley-VCH; Weinheim: 2006.Reference Ris Wihthout Link - 7b
Tietze LF. Chem. Rev. 1996, 96: 115Reference Ris Wihthout Link - 7c For a specific review
about asymmetric organocatalytic domino reactions, see:
Enders D.Grondal C.Hüttl MRM. Angew. Chem. Int. Ed. 2007, 46: 1570 ; Angew. Chem. 2007, 119, 1590Reference Ris Wihthout Link
References and Notes
Typical Experimental
Procedure: To a stirred solution of N-PMP-protected α-imino
ethyl glyoxalate (3a; 47 mg, 0.228 mmol)
and l-proline (3.5 mg, 20 mol%)
in DMF
(0.5 mL) at -20 ˚C was added
aldehyde 2b (R¹ = Et;
50 mg, 0.152 mmol) and the stirring was continued for 20 h at
-20 ˚C.
The reaction mixture was then diluted with EtOAc
(1 mL)
and added to a solution of sodium triacetoxyboro-hydride (3 equiv)
in EtOAc at 0 ˚C. After the reaction mixture had been stirred
for further 15 min, the reaction was quenched with phosphate buffer
(pH 7) and the crude product was extracted with EtOAc. The organic
layer was washed with brine, dried over MgSO4, filtered
and concentrated. The residue was purified by flash column chromatography
(PE-EtOAc, 1:2 → 1:1) to afford the product 4d (40 mg, 49%) as a viscous oil,
which was recrystallized from EtOAc-PE; mp 50 ˚C; [α]D
²¹ +15.8˚ (c = 0.07, CHCl3). ¹H
NMR (300 MHz, CDCl3): δ = 0.96 (t, J = 7.2 Hz, 3 H, Me), 1.14 (t, J = 7.2 Hz, 3 H, Me), 1.31-1.88 (m,
6 H, 4-CH, 5-CH2, CH2CH3, OH),
2.43 (m, 1 H, 3-CH), 2.60 (dd, J = 13.5,
9.6 Hz, 1 H, CH-benzyl), 3.10 (dd,
J = 17.7,
3.0 Hz, 1 H, CHCO), 3.21 (dd, J = 13.5,
3.0 Hz,
1 H, CH-benzyl), 3.53 (dd, J = 17.7,
10.0 Hz, 1 H, CHCO), 3.61-3.72 (m, 2 H, CH2OH),
3.73 (s, 3 H, MeO), 4.09-4.14 (m, 4 H, OCH2CH3,
5′′-CH2), 4.40-4.46 (m, 1
H, 6-CH), 4.50 (d, J = 4.2 Hz,
1 H, 2-CH), 4.62 (mc, 1 H, 4′′-CH),
6.81 (d, J = 8.8 Hz, 2 H, phenyl-CH),
7.04 (d, J = 8.8 Hz, 2 H, phenyl-CH),
7.14 (d, J = 6.8 Hz, 2 H, phenyl-CH),
7.25-7.29 (m, 3 H, phenyl-CH). ¹³C
NMR (75 MHz, CDCl3): δ = 11.79 (Me),
14.22 (Me), 24.01 (CH2CH3),
27.03 (C4), 31.71 (CH2CO),
32.04 (C5), 37.99 (benzyl-C), 42.55 (C3),
49.59 (C6), 55.24 (C′′4),
55.97 (OMe), 59.86 (C2), 59.97 (CH2CO), 61.06
(CH2OH), 66.22 (C′′5), 114.5,
118.7, 127.4, 129.05, 129.4, 135.4, 142.3, 153.7 (phenyl-C), 153.2
(CO-urethane), 172.4 (CO-amide), 174.0 (CO-ester). IR (film): 3500
(OH), 3029, 2959, 2875, 2833 (CH), 1785 (CO-urethane), 1720 (CO-ester),
1695 (CO-amide), 1605, 1512, 1454, 1384, 1351 (Me, CH2),
1244, 1180, 1087, 1043, 970, 941, 788, 702, 626 cm-¹.
MS (ESI, Na): m/z = 539.2 [M + H]+,
561.2 [M + Na]+. Anal.
Calcd for C30H38N2O7 (538.63):
C, 66.90; H, 7.11; N, 5.20. Found: C, 66.46; H, 7.00; N, 5.19.
The structural data have been deposited with the Cambridge Crystallographic Data Centre and allocated the deposition number CCDC 686773, which contains the supplementary crystallographic data for this paper.