Synthesis 2009(3): 488-494  
DOI: 10.1055/s-0028-1083302
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

On-Resin Click-Glycoconjugation of Peptoids

Anna S. Norgrena, Carsten Budkeb, Zsuzsa Majerc, Carolin Heggemanna, Thomas Koopb, Norbert Sewald*a
a Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, PO Box 10 01 31, 33501 Bielefeld, Germany
e-Mail: norbert.sewald@uni-bielefeld.de;
b Department of Chemistry, Physical Chemistry, Bielefeld University, 33501 Bielefeld, Germany
c Institute of Chemistry, Eötvös University, 1117 Budapest, Hungary
Further Information

Publication History

Received 4 June 2008
Publication Date:
09 January 2009 (online)

Abstract

Peptoids are unnatural peptide-like oligomers having the side-chain attached to the glycine nitrogen. In order to investigate how such oligomers are affected upon glycoconjugation, a series of glycosylated peptoids has been synthesized. The conjugation between glycosyl residue and peptoid was achieved by azide + alkyne [3+2] cycloaddition (click reaction). The glycosylated peptoids were obtained by either stepwise assembly from sarcosine and glycosylated monomers or global on-resin click glycoconjugation. CD spectroscopic studies were performed on both unglycosylated and glycosylated peptoids with varying chain-length, revealing length and substituent dependences. Additionally, three peptoids were tested for antifreeze activity.

    References

  • 1a Sewald N. Jakubke H.-D. Peptides: Chemistry and Biology   Wiley-VCH; Weinheim: 2002. 
  • 1b Zuckermann RN. Barron AE. Curr. Opin. Chem. Biol.  1999,  3:  681 
  • 2 Zuckermann RN. Kerr JM. Kent SBH. Moos WH. J. Am. Chem. Soc.  1992,  114:  10646 
  • 3a Armand P. Kirshenbaum K. Falicov A. Dunbrack RL. Dill KA. Zuckermann RN. Cohen FE. Fold Des.  1997,  2:  369 
  • 3b Kirshenbaum K. Barron AE. Goldsmith RA. Armand P. Bradley EK. Truong KTV. Dill KA. Cohen FE. Zuckermann RN. Proc. Natl. Acad. Sci. U.S.A.  1998,  95:  4303 
  • 4a Lis H. Sharon N. Eur. J. Biochem.  1993,  218:  1 
  • 4b Varki A. Glycobiology  1993,  3:  97 
  • 4c Montreuil J. Schachter H. Vliegenthart JFG. Glycoproteins   Elsevier; Amsterdam: 1995. 
  • 5 Dwek RA. Chem. Rev.  1996,  96:  683 
  • 6a Yeh Y. Feeney RE. Chem. Rev.  1996,  96:  601 
  • 6b Harding MH. Anderberg PI. Haymet DJ. Eur. J. Biochem.  2003,  270:  1381 
  • 7a Saha UK. Roy R. Tetrahedron Lett.  1997,  38:  7697 ; and references cited therein
  • 7b Burger K. Böttcher C. Radics G. Hennig L. Tetrahedron Lett.  2001,  42:  3061 
  • 8a Kim JM. Roy R. Carbohydr. Res.  1997,  298:  173 
  • 8b Hu Y.-J. Roy R. Tetrahedron Lett.  1999,  40:  3305 
  • 8c Yuasa H. Kamata Y. Kurano S. Hashimoto H. Bioorg. Med. Chem. Lett.  1998,  8:  2139 
  • 9 Dechantsreiter MA. Burkhart F. Kessler H. Tetrahedron Lett.  1998,  39:  253 
  • 10a Kolb HC. Finn MG. Sharpless KB. Angew. Chem. Int. Ed.  2001,  40:  2004 
  • 10b Tornøe CW. Christensen C. Meldal M. J. Org. Chem.  2002,  67:  3057 
  • 11 Kuijpers BHM. Groothuys S. Keereweer ABR. Quaedflieg PJLM. Blaauw RH. van Delft FL. Rutjes FPJT. Org. Lett.  2004,  6:  3123 
  • 12 Dondoni A. Giovannini PP. Massi A. Org. Lett.  2004,  6:  2929 
  • 13 Kruijtzer JAW. Hofmeyer LJF. Heerma W. Versluis C. Liskamp RMJ. Chem. Eur. J.  1998,  4:  1570 
  • 14 Bianchi A. Bernardi A. J. Org. Chem.  2006,  71:  4565 
  • 15 Micheel F. Adv. Carbohydr. Chem.  1961,  16:  85 
  • 16 Szilágyi L. Győrgydeák Z. Carbohydr. Res.  1985,  143:  21 
  • 17 Rostovtsev VV. Green LG. Fokin VV. Sharpless KB. Angew. Chem. Int. Ed.  2002,  41:  2596 
  • 18 Seebach D. Matthews JL. J. Chem. Soc., Chem. Commun.  1997,  2015 
  • 19a Knight CA. Wen DY. Laursen RA. Cryobiology  1995,  32:  23 
  • 19b Inada T. Lu SS. Cryst. Growth Des.  2003,  3:  747 
  • 20a Budke C. Koop T. ChemPhysChem  2006,  7:  2601 
  • 20b

    Budke, C.; Heggemann, C.; Koch, M.; Sewald, N.; Koop, T., submitted.

  • 21 Tachibana Y. Fletcher GL. Fujitani N. Tsuda S. Monde K. Nishimura S.-I. Angew. Chem. Int. Ed.  2004,  43:  856