Abstract
The feasibility of using chiral Lewis acids as catalysts to promote
the inverse-electron-demand Diels-Alder reactions of 1-azadienes
with vinyl ethers has been demonstrated. Two catalyst systems were
identified for this reaction, both relying on the presence of a
coordinating 2-pyridylsulfonyl or 8-quinolylsulfonyl group at the
imine nitrogen of the 1-azadiene. The combination of a 8-quinolylsulfonyl
moiety and nickel(II)/DBFOX-Ph proved to be highly efficient,
allowing the synthesis of substituted piperidine derivatives in
good yields, excellent endo selectivity,
and enantioselectivities typically in the range of 77
to 92% ee.
Key words
Diels-Alder reactions -
N -sulfonyl-1-azadienes - vinyl ethers - chiral Lewis acids - imines - asymmetric catalysis
References
For a recent review on stereoselective
aza-Diels-Alder reactions, see:
<A NAME="RC05908SS-1A">1a </A> For a review on catalytic
asymmetric aza-Diels-Alder reactions, see:
Rowland GB.
Rowland EB.
Zhang Q.
Antilla JC.
Curr.
Org. Chem.
2006,
10:
981
<A NAME="RC05908SS-1B">1b </A>
Kobayashi S. In
Cycloaddition Reactions in Organic Synthesis
Kobayashi S.
Jørgensen KA.
Wiley-VCH;
Weinheim:
2002.
Chap.
5.
p.187-209
<A NAME="RC05908SS-2">2 </A> This reaction was first achieved
by Yamamoto using a stoichiometric amount of a chiral boron complex.
See:
Hattori K.
Yamamoto H.
J.
Org. Chem.
1992,
57:
3264
<A NAME="RC05908SS-3A">3a </A>
Kobayashi S.
Komiyama S.
Ishitani H.
Angew. Chem. Int. Ed.
1998,
37:
979
<A NAME="RC05908SS-3B">3b </A>
Kobayashi S.
Kusakabe K.-i.
Komiyama S.
Ishitani H.
J. Org. Chem.
1999,
64:
4220
<A NAME="RC05908SS-3C">3c </A>
Kobayashi S.
Kusakabe K.-i.
Ishitani H.
Org.
Lett.
2000,
2:
1225
<A NAME="RC05908SS-3D">3d </A> For the use of hydrazones
as dienophiles, see:
Kobayashi S.
Ueno M.
Saito S.
Mizuki Y.
Ishitani H.
Yamashita Y.
Proc.
Natl. Acad. Sci. U.S.A.
2004,
101:
5476
<A NAME="RC05908SS-3E">3e </A>
Yamashita Y.
Mizuki Y.
Kobayashi S.
Tetrahedron
Lett.
2005,
46:
1803
<A NAME="RC05908SS-4">4 </A>
Josephsohn NS.
Snapper ML.
Hoveyda AH.
J. Am. Chem. Soc.
2003,
125:
4018
<A NAME="RC05908SS-5A">5a </A>
Yao S.
Johannsen M.
Hazell RG.
Jørgensen KA.
Angew. Chem. Int. Ed.
1998,
37:
3121
<A NAME="RC05908SS-5B">5b </A>
Yao S.
Saaby S.
Hazell RG.
Jørgensen KA.
Chem.
Eur. J.
2000,
6:
2435
<A NAME="RC05908SS-5C">5c </A>
García Mancheño O.
Gómez Arrayás R.
Carretero JC.
J.
Am. Chem. Soc.
2004,
126:
456
<A NAME="RC05908SS-5D">5d </A>
García Mancheño O.
Gómez Arrayás R.
Adrio J.
Carretero JC.
J. Org. Chem.
2007,
72:
10294
<A NAME="RC05908SS-6A">6a </A>
Guillarme S.
Whiting A.
Synlett
2004,
711
<A NAME="RC05908SS-6B">6b </A>
Di Bari L.
Guillarme S.
Hanan J.
Henderson AP.
Howard JAK.
Pescitelli G.
Probert MR.
Salvadori P.
Whiting A.
Eur. J. Org. Chem.
2007,
5771
<A NAME="RC05908SS-7">7 </A>
Shang D.
Xin J.
Liu Y.
Zhou X.
Liu X.
Feng X.
J. Org.
Chem.
2008,
73:
630
<A NAME="RC05908SS-8">8 </A>
Jurčík V.
Arai K.
Salter MM.
Yamashita Y.
Kobayashi S.
Adv. Synth. Catal.
2008,
350:
647
<A NAME="RC05908SS-9A">9a </A>
Sundén H.
Ibrahem I.
Eriksson L.
Córdova A.
Angew.
Chem. Int. Ed.
2005,
44:
4877
<A NAME="RC05908SS-9B">9b </A>
Akiyama T.
Morita H.
Fuchibe K.
J.
Am. Chem. Soc.
2006,
128:
13070
<A NAME="RC05908SS-9C">9c </A>
Itoh J.
Fuchibe K.
Akiyama T.
Angew.
Chem. Int. Ed.
2006,
45:
4796
<A NAME="RC05908SS-9D">9d </A>
Akiyama T.
Tamura Y.
Itoh J.
Morita H.
Fuchibe K.
Synlett
2006,
141
<A NAME="RC05908SS-9E">9e </A>
Newman CA.
Antilla JC.
Chen P.
Predeus AV.
Fielding L.
Wulff WD.
J.
Am. Chem. Soc.
2007,
129:
7216
<A NAME="RC05908SS-10">10 </A>
Jnoff E.
Ghosez L.
J. Am. Chem. Soc.
1999,
121:
2617
<A NAME="RC05908SS-11">11 </A>
Sundararajan G.
Prabagaran N.
Varghese B.
Org.
Lett.
2001,
3:
1973
<A NAME="RC05908SS-12">12 </A>
Magesh CJ.
Makesh SV.
Perumal PT.
Bioorg. Chem. Lett.
2004,
14:
2035
<A NAME="RC05908SS-13">13 </A> For a review on the ADAR of 1-azadienes,
see:
Behforouz M.
Ahmadian M.
Tetrahedron
2000,
56:
5259
<A NAME="RC05908SS-14A">14a </A>
Boger DL.
Corbett WL.
Curran TT.
Kasper AM.
J. Am. Chem. Soc.
1991,
113:
1713
<A NAME="RC05908SS-14B">14b </A>
Boger DL.
Corbett WL.
J.
Org. Chem.
1993,
58:
2068 ;
and references cited therein
<A NAME="RC05908SS-15">15 </A>
Clark RC.
Pfeiffer SS.
Boger DL.
J. Am. Chem. Soc.
2006,
128:
2587
For recent examples on diastereoselective
ADAR of 1-aza-dienes, see:
<A NAME="RC05908SS-16A">16a </A>
Aversa MC.
Barattucci A.
Bilardo MC.
Bonaccorsi P.
Giannetto P.
Synthesis
2003,
2241
<A NAME="RC05908SS-16B">16b </A>
Berry CR.
Hsung RP.
Tetrahedron
2004,
60:
7629
<A NAME="RC05908SS-16C">16c </A> See also:
Tarver JE.
Terranova KM.
Joullié MM.
Tetrahedron
2004,
60:
10277
<A NAME="RC05908SS-16D">16d </A>
Palacios F.
Vicario J.
Aparicio D.
Tetrahedron
Lett.
2007,
48:
6747
<A NAME="RC05908SS-17">17 </A>
He M.
Struble JR.
Bode JW.
J.
Am. Chem. Soc.
2006,
128:
8418
<A NAME="RC05908SS-18">18 </A>
Han B.
Li J.-L.
Ma C.
Zhang S.
J.
Chen Y.-C.
Angew. Chem.
Int. Ed.
2008,
47:
9971
<A NAME="RC05908SS-19">19 </A> For the Cu(OTf)2 -catalyzed
intramolecular ADAR of a 2-cyano-1-azadiene containing an enol ether
component, see:
Motorina IA.
Grierson DS.
Tetrahedron Lett.
1999,
40:
7215
<A NAME="RC05908SS-20A">20a </A>
Sugimoto H.
Nakamura S.
Hattori M.
Ozeki S.
Shibata N.
Toru T.
Tetrahedron
Lett.
2005,
46:
8941
<A NAME="RC05908SS-20B">20b </A>
Nakamura S.
Nakashima H.
Sugimoto H.
Shibata N.
Toru T.
Tetrahedron
Lett.
2006,
47:
7599
<A NAME="RC05908SS-20C">20c </A>
Morimoto H.
Lu G.
Aoyama N.
Matsunaga S.
Shibasaki M.
J. Am.
Chem. Soc.
2007,
129:
9588
<A NAME="RC05908SS-20D">20d </A>
Nakamura S.
Nakashima H.
Sugimoto H.
Sano H.
Hattori M.
Shibata N.
Toru T.
Chem. Eur.
J.
2008,
14:
2145
<A NAME="RC05908SS-20E">20e </A>
Nakamura S.
Nakashima H.
Yamamura A.
Shibata N.
Toru T.
Adv.
Synth. Catal.
2008,
350:
1209
<A NAME="RC05908SS-20F">20f </A>
Lu G.
Morimoto H.
Matsunaga S.
Shibasaki M.
Angew. Chem. Int. Ed.
2008,
47:
6847
<A NAME="RC05908SS-21A">21a </A>
Esquivias J.
Gómez Arrayás R.
Carretero JC.
J.
Org. Chem.
2005,
70:
7451
<A NAME="RC05908SS-21B">21b </A>
Esquivias J.
Gómez Arrayás R.
Carretero JC.
Angew. Chem. Int.
Ed.
2006,
45:
629
<A NAME="RC05908SS-21C">21c </A>
Salvador González A.
Gómez Arrayás R.
Carretero JC.
Org.
Lett.
2006,
8:
2977
<A NAME="RC05908SS-21D">21d </A>
Esquivias J.
Goméz Arrayás R.
Carretero JC.
Angew. Chem. Int.
Ed.
2007,
46:
9257
<A NAME="RC05908SS-21E">21e </A>
Salvador González A.
Gómez Arrayás R.
Rodríguez Rivero M.
Carretero JC.
Org. Lett.
2008,
10:
4335
<A NAME="RC05908SS-22">22 </A> For a recent communication of this
work, see:
Esquivias J.
Gómez Arrayás R.
Carretero JC.
J.
Am. Chem. Soc.
2007,
129:
1480
<A NAME="RC05908SS-23">23 </A>
For the synthesis of 2-pyridylsulfonyl
imines 1 -4 and 7 -10 , see
ref. 21a. For the synthesis of 8-quinolylsulfonyl imines 20 , 28 -35 , 44 , 45 , and 48 , see
ref. 22.
<A NAME="RC05908SS-24">24 </A>
In agreement with literature data,
only decomposition products were obtained in the reactions of N -tosyl-, N -(2-thienylsulfonyl)-,
and N -(2-pyridylsulfonyl)imines of benzaldehyde
with 5 in the presence of 10 mol% of Cu(OTf)2 after
48 hours at room temperature.
<A NAME="RC05908SS-25">25 </A>
Amounts of dienophile lower than 20
equivalents led to incomplete conversions.
<A NAME="RC05908SS-26">26 </A>
Similar enantioselectivities were
obtained in other solvents, such as toluene (61% ee), 1,2-dichloroethane
(62% ee), tetrahydrofuran (58% ee), or 1,4-dioxane
(60% ee).
<A NAME="RC05908SS-27A">27a </A> For
the optimized preparation of the DBFOX-Ph ligand, see:
Kanemasa S.
Oderaotoshi Y.
Yamamoto H.
Tanaka J.
Wada E.
Curran DP.
J. Org. Chem.
1997,
62:
6454
<A NAME="RC05908SS-27B">27b </A>
Ulrich I.
Oderaotoshi Y.
Kanemasa S.
Curran DP.
Org. Synth.
2003,
80:
46
<A NAME="RC05908SS-28">28 </A>
Dichloromethane proved to be the optimal
solvent (DCE led to poorer endo selectivity
while no reaction was observed in toluene, Et2 O, or THF).
<A NAME="RC05908SS-29">29 </A> The Ni(ClO4 )2 ˙6H2 O
and DBFOX-Ph led to a complex that contains three molecules of water.
Kanemasa’s group previously observed a decrease of asymmetric
induction when the reaction is performed in the presence of molecular sieves.
See, for instance:
Itoh S.
Kanemasa S.
J. Am. Chem. Soc.
2002,
124:
13394
<A NAME="RC05908SS-30">30 </A> For an example of the preparation
of a chiral [1,2,4]benzo-thiadiazine-5,5-dioxide
with activity as an AMPA receptor modulator, see:
Cobley CJ.
Foucher E.
Lecouve J.-P.
Lennon IC.
Ramsdem JA.
Thominot G.
Tetrahedron: Asymmetry
2003,
14:
3431
<A NAME="RC05908SS-31">31 </A> See, for instance:
Desos P.
Serkiz B.
Morain P.
Lepagnol J.
Cordi A.
Bioorg. Med. Chem. Lett.
1996,
6:
3003
<A NAME="RC05908SS-32">32 </A>
Unit cell parameters: a = 9.4345 (2), b = 11.1796 (3), c = 21.8461 (6); space group P 21 21 21 .
CCDC 641861 contains the supplementary crystallographic data for
this compound. These data can be obtained free of charge from the Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
<A NAME="RC05908SS-33">33 </A>
Critical NOE contacts for 54a and 54b are
shown in Figure
[³ ]
below.
Figure 3
<A NAME="RC05908SS-34">34 </A>
The supplementary crystallographic
data for 54b can be found in the Supporting
Information of ref. 22.
<A NAME="RC05908SS-35A">35a </A>
Stewart JJP.
J. Comput.
Chem.
1989,
10:
209
<A NAME="RC05908SS-35B">35b </A>
Stewart JJP.
J. Comput. Chem.
1989,
10:
221
<A NAME="RC05908SS-35C">35c </A>
HyperChem
6.02
Hypercube Inc.;
Gainesville
FL:
1999.
<A NAME="RC05908SS-36A">36a </A>
Becke AD.
J. Chem. Phys.
1993,
98:
1372
<A NAME="RC05908SS-36B">36b </A>
Lee C.
Yang W.
Parr RG.
Phys.
Rev. B
1988,
37:
785
<A NAME="RC05908SS-37">37 </A>
Frisch MJ.
Trucks GW.
Schlegel HB.
Scuseria GE.
Robb MA.
Cheeseman JR.
Montgomery JA.
Vreven T.
Kudin KN.
Burant JC.
Millam JM.
Iyengar SS.
Tomasi J.
Barone V.
Mennucci B.
Cossi M.
Scalmani G.
Rega N.
Petersson GA.
Nakatsuji H.
Hada M.
Ehara M.
Toyota K.
Fukuda R.
Hasegawa J.
Ishida M.
Nakajima T.
Honda Y.
Kitao O.
Nakai H.
Klene M.
Li X.
Knox JE.
Hratchian HP.
Cross JB.
Bakken V.
Adamo C.
Jaramillo J.
Gomperts R.
Stratmann RE.
Yazyev O.
Austin AJ.
Cammi R.
Pomelli C.
Ochterski JW.
Ayala PY.
Morokuma K.
Voth GA.
Salvador P.
Dannenberg JJ.
Zakrzewski VG.
Dapprich S.
Daniels AD.
Strain MC.
Farkas O.
Malick DK.
Rabuck AD.
Raghavachari K.
Foresman JB.
Ortiz JV.
Cui Q.
Baboul AG.
Clifford S.
Cioslowski J.
Stefanov BB.
Liu G.
Liashenko A.
Piskorz P.
Komaromi I.
Martin RL.
Fox DJ.
Keith T.
Al-Laham MA.
Peng CY.
Nanayakkara A.
Challacombe M.
Gill PMW.
Johnson B.
Chen W.
Wong MW.
Gonzalez C.
Pople JA.
Gaussian 03, Revision E.01
Gaussian
Inc.;
Wallingford CT:
2004.
<A NAME="RC05908SS-38A">38a </A>
Ditchfield R.
Hehre WJ.
Pople JA.
J. Chem. Phys.
1971,
54:
724
<A NAME="RC05908SS-38B">38b </A>
Hehre WJ.
Ditchfield R.
Pople JA.
J. Chem. Phys.
1972,
56:
2257
<A NAME="RC05908SS-38C">38c </A>
Hariharan PC.
Pople JA.
Theor.
Chim. Acta
1973,
28:
213
<A NAME="RC05908SS-39A">39a </A>
Binkley JS.
Pople JA.
Hehre WJ.
J.
Am. Chem. Soc.
1980,
102:
939
<A NAME="RC05908SS-39B">39b </A>
Dobbs KD.
Hehre WJ.
J. Comput.
Chem.
1986,
7:
359
<A NAME="RC05908SS-40">40 </A>
Hay PJ.
Wadt WR.
J. Chem. Phys.
1985,
82:
270