Subscribe to RSS
DOI: 10.1055/a-2705-9249
I2-Catalyzed Access to Bis(pyrazolo[1,5-a]pyrimidinyl)sulfanes and Sulfenylated Pyrazolo[1,5-a]pyrimidines via C–H Functionalization
Authors
Supported by: Department of Science, Technology and Biotechnology (DSTBT), West Bengal, India GO no. 324(Sanc.)/STBT-11012(25)/13/2024-ST SEC
Supported by: Science and Engineering Research Board EEQ/2018/000498
Funding Information A.K.B. acknowledges the Department of Science, Technology and Biotechnology (DSTBT), West Bengal, India (GO no. 324(Sanc.)/STBT-11012(25)/13/2024-ST SEC), ANRF, DST (File no. EEQ/2018/000498), and the University of Kalyani (PRG) for financial support.

Dedication
This article is dedicated to Prof. S. Chandrasekaran on the occasion of his 80th birthday.
Abstract
We have demonstrated a new route to bis(pyrazolo[1,5-a]pyrimidinyl)sulfanes from pyrazolo[1,5-a]pyrimidines through I2-catalyzed C–H functionalization employing thiourea as the sulfur source. 3-Iodopyrazolo[1,5-a]pyrimidines acted as the active intermediates for this radical C–H sulfenylation. This I2-catalyzed C–H sulfenylation has been extended toward the synthesis of sulfenylated pyrazolo[1,5-a]pyrimidines using sulfonyl hydrazides as sulfenylating agents. Various bis(pyrazolo[1,5-a]pyrimidinyl)sulfanes and sulfenylated pyrazolo[1,5-a]pyrimidines have been synthesized using these simple protocols. The use of easily accessible and bench-stable reactants and reagents, metal-free catalysis, broad substrate scopes, and practicality are the attractive features of this strategy. Moreover, the usefulness of thiourea as a sulfur source in the synthesis of bis(2-phenylimidazo[1,2-a]pyridin-3-yl)sulfane and bis(6-phenylimidazo[2,1-b]thiazol-5-yl)sulfane derivatives has been demonstrated.
Publication History
Received: 18 July 2025
Accepted after revision: 02 September 2025
Accepted Manuscript online:
19 September 2025
Article published online:
05 November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Feng M, Tang BH, Liang S, Jiang X. Curr Top Med Chem 2016; 16: 1200-1216
- 1b Scott KA, Njardarson JT. Top Curr Chem 2018; 376: 5
- 2a Dong D-Q, Hao S-H, Yang D-S, Li L-X, Wang Z-L. Eur J Org Chem 2017; 2017: 6576-6592
- 2b Hosseinian A, Arshadi S, Sarhandi S, Monfared A, Vessally EJ. Sulphur Chem 2019; 40: 289-311
- 3a Yang W, Guo J, Hee S, Chen Y. Adv Synth Catal 2025; 367: e202401486
- 3b Mondal K, Paul S, Halder P, Talukdar V, Das P. J Org Chem 2024; 89: 17042-17058
- 3c Rai A, Prabhakar NS, Kishor K, Singh KN. J Org Chem 2024; 89: 15075-15082
- 3d Tyagi A, Taneja N, Khan J, Hazra CK. Adv Synth Catal 2023; 365: 1247-1254
- 3e Shen C, Zhang P, Sun Q, Bai S, Hor TSA, Liu X. Chem Soc Rev 2015; 44: 291-314 and cited therein
- 4a Paul S, Choudhuri T, Das S, Sikdar P, Bagdi AK. Synlett 2025; 36: 1322-1337
- 4b Gupta A, Das R, Chamoli A. et al. Organometallics 2022; 41: 2365-2378
- 4c Kumar H, Das R, Choithramani A. et al. ChemistrySelect 2021; 6: 5807-5837
- 4d Zisapel N. Expert Opin Invest Drugs 2015; 24: 401-411
- 5a Rammohan A, Nagajyothi PC, Zyryanov GV, Prasad PD, Shim J. Dyes Pigm 2025; 241: 112896
- 5b Tigreros A, Macías M, Portilla J. ChemPhotoChem 2022; 6: e202200133
- 5c Tigreros A, Zapata-Rivera J, Portilla J. ACS Sustainable Chem Eng 2021; 9: 12058-12069
- 5d Tigreros A, Aranzazu S-L, Bravo N-F, Zapata-Rivera J, Portilla J. RSC Adv 2020; 10: 39542-39552
- 5e Singsardar M, Sarkar R, Majhi K, Sinha S, Hajra A. ChemistrySelect 2018; 3: 1404-1410
- 5f Qu C, Ding M, Zhu Y. et al. J Med Chem 2017; 60: 4680-4692
- 6 Paul S, Biswas S, Choudhuri T, Bandyopadhyay S, Mandal S, Bagdi AK. ACS Appl Bio Mater 2025; 8: 3254-3269
- 7 Paul S, Das S, Choudhuri T, Sikdar P, Bagdi AK. J Org Chem 2023; 88: 4187-4198
- 8 Chillal AS, Bhawale RT, Sharma S, Kshirsagar UA. J Org Chem 2024; 89: 14496-14504
- 9a Mishra U, Gautam B, Kumari P. et al. Sulphur Chem 2025; 46: 94-142
- 9b Zhao S, Chen K, Zhang L, Yang W, Huang D. Adv Synth Catal 2020; 362: 3516-3541
- 9c Bagdi AK, Mitra S, Ghosh M, Hajra A. Org Biomol Chem 2015; 13: 3314-3320
- 9d Singh R, Raghuvanshi DS, Singh KN. Org Lett 2013; 15: 4202
- 9e Yang F-L, Tian S-K. Angew Chem Int Ed 2013; 52: 4929
- 10a Konishi H, Aoki Y, Yamaguchi M, Manabe K. ACS Catal 2024; 14: 15348-15355
- 10b Wang X, Chen J-Q, Yang X-X, Hao E-J, Dong ZB. Eur J Org Chem 2022; e202200015
- 10c Sundaravelu N, Sangeetha S, Sekar G. Org Biomol Chem 2021; 19: 1459-1482
- 10d Jiang H, Shen H, Zhu S. et al. ACS Omega 2021; 6: 26273-26281
- 10e Tian L-L, Lu S, Zhang Z-H. et al. J Org Chem 2019; 84: 5213-5221
- 10f Gao Y-C, Huang Z-B, Xu L, Li Z-D, Lai Z-S, Tang R-Y. Org Biomol Chem 2019; 17: 2279-2286
- 10g Ogiwara Y, Maeda H, Sakai N. Synlett 2018; 29: 655-657
- 10h Shakoor SMA, Agarwal DS, Khullar S, Mandal SK, Sakhuja R. Chem-Asian J 2017; 12: 3061-3068
- 10i Liu H, Jiang X. Chem Asian J 2013; 8: 2546-2563
- 11 Kumar P, Saxena D, Maitra R, Chopra S, Narender T. Org Biomol Chem 2023; 21: 8289-8293