Synthesis 2025; 57(23): 3606-3610
DOI: 10.1055/a-2705-4229
Paper

Total Synthesis of Vestitol and Medicarpin

Authors

  • Jigang Gao

    1   School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China (Ringgold ID: RIN47891)
    2   Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China (Ringgold ID: RIN12381)
  • Qiling Chen

    1   School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China (Ringgold ID: RIN47891)
  • Shaobin Su

    2   Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China (Ringgold ID: RIN12381)
  • Bin Cheng

    1   School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China (Ringgold ID: RIN47891)
  • Hongjian Yang

    3   Chemistry Department, Foshan Ionova Biotherapeutics Co., Inc., Foshan, China
  • Haiyan Sun

    1   School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China (Ringgold ID: RIN47891)

We thank Innovation Team of Guangdong Education Department (No. 2022KCXTD054), Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515111032) and Shenzhen Science and Technology Innovation Committee (No. 20220815100042003) for the financial support.
Supported by: Innovation Team of Guangdong Education Department 2022KCXTD054


Graphical Abstract

Abstract

Total synthesis of vestitol and medicarpin, two isoflavonoids with distinct skeletons, was successfully achieved using a single intermediate as the starting point. This six-step synthetic approach features a BBr3-promoted tandem O-demethylation/cyclization reaction, which enables the rapid construction of the pterocarpan core structure. Subsequently, a Pd/C-catalyzed hydrogenation/hydrogenolysis reaction was employed to respectively synthesize vestitol and medicarpin.



Publication History

Received: 03 June 2025

Accepted after revision: 29 August 2025

Accepted Manuscript online:
19 September 2025

Article published online:
09 October 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

    • 3a Cayetano-Salazar L, Olea-Flores M, Zuñiga-Eulogio MD. et al. Phytother Res 2021; 35: 4092
    • 3b Han R-M, Tian Y-X, Liu Y. et al. J Agric Food Chem 2009; 57: 3780
    • 3c Stanislawska IJ, Figat RA, Kiss K, Bobrowska-Korczak B. Nutrients 2022; 14: 1225
    • 3d Ahmed QU, Ali AHM, Mukhtar S. et al. Molecules 2020; 25: 5491
  • 4 Křížová L, Dadáková K, Kašparovská J, Kašparovský T. Molecules 2019; 24: 1076
    • 5a Awale S, Li F, Onozuka H, Esumi H, Tezuka Y, Kadota S. Bioorg Med Chem 2008; 16: 181
    • 5b Pluempanupat S, Kumrungsee N, Pluempanupat W. et al. Ind Crops Prod 2013; 44: 653
    • 5c Chang Y-C, Nair MG, Nitiss JL. J Nat Prod 1995; 58: 1901
    • 5d Fukai T, Marumo A, Kaitou K, Kanda T, Terada S, Nomura T. Life Sci 2002; 71: 1449
    • 6a Seo E-K, Kim N-C, Mi Q. et al. J Nat Prod 2001; 64: 1483
    • 6b Militão GCG, Dantas INF, Pessoa C. et al. Life Sci 2006; 78: 2409
    • 6c Selvam C, Jordan BC, Prakash S, Mutisya D, Thilagavathi R. Eur J Med Chem 2017; 128: 219
    • 6d Goel A, Kumar A, Raghuvanshi A. Chem Rev 2013; 113: 1614
  • 7 Bueno-Silva B, Alencar SM, Koo H. et al. J Agric Food Chem 2013; 61: 4546
    • 9a VanEtten HD, Matthews PS, Mercer EH. Phytochemistry 1983; 22: 2291
    • 9b Ferrari F, Botta B, Alves de Lima R. Phytochemistry 1983; 22: 1663
    • 9c Reyes-Chilpa R, Gómez-Garibay F, Moreno-Torres G, Jiménez-Estrada M, Quiroz-Vásquez RI. Holzforschung 1998; 52: 459
    • 10a Zheng KYZ, Choi RCY, Cheung AWH. et al. J Agric Food Chem 2011; 59: 1697
    • 10b Tyagi AM, Gautam AK, Kumar A. et al. Mol Cell Endocrinol 2010; 325: 101
    • 10c Gatouillat G, Magid AA, Bertin E. et al. Phytomedicine 2015; 22: 1186
    • 10d Trivedi R, Maurya R, Mishra DP. Cell Death Dis 2014; 5: e1465
    • 10e Kureel J, John AA, Raghuvanshi A, Awasthi P, Goel A, Singh D. Mol Cell Biochem 2016; 418: 71
    • 11a Barnes S, Peterson TG. Proc Soc Exp Biol Med 1995; 208: 103
    • 11b Engler TA, Reddy JP, Combrink KD, Velde DV. J Org Chem 1990; 55: 1248
    • 14a Goel A, Kumar A, Hemberger Y. et al. Org Biomol Chem 2012; 10: 9583
    • 14b Feng Z, Bai W, Pettus TRR. Angew Chem Int Ed 1864; 2015: 54
    • 14c Gharpure SJ, Sathiyanarayanan AM, Jonnalagadda P. Tetrahedron Lett 2008; 49: 2974
    • 14d Erhardt P, Luniwal A. Synlett 2011; 11: 1605
    • 14e Zhang J, Zhang S, Yang H. et al. Tetrahedron Lett 2018; 59: 2407
    • 14f Takashima Y, Kaneko Y, Kobayashi Y. Tetrahedron 2010; 66: 197
    • 14g Heemstra JM, Kerrigan SA, Doerge DR, Helferich WG, Boulanger WA. Org Lett 2006; 8: 5441
    • 14h Yang X, Zhao Y, Hsieh M-T. et al. J Nat Prod 2017; 80: 3284
  • 16 Miki Y, Kobayashi S, Ogawa N, Hachiken H. Synlett 1994; 12: 1001