Subscribe to RSS
DOI: 10.1055/a-2685-9147
Asymmetric Gold-Catalyzed Alkyne Transformations for Synthesis of Axial, Helical, and Planar Chirality
Authors
Supported by: Zhejiang Provincial Natural Science Foundation of China LQ23B020002
We are grateful for financial support from the National Natural Science Foundation of China (22401218) and Zhejiang Provincial Natural Science Foundation of China (LQ23B020002).

Abstract
Gold-catalyzed asymmetric alkyne transformations have emerged as a powerful strategy for constructing chiral architectures owing to gold’s unique carbophilic π-acidity. This review comprehensively summarizes recent breakthroughs in constructing noncentral chirality, focusing on axial, helical, and planar chiral scaffolds. Beyond that, innovative ligand design and the underlying structure–activity relationships that govern stereocontrol are highlighted in this review. This overview provides insights into current trends in gold-catalyzed asymmetric synthesis.
Publication History
Received: 03 July 2025
Accepted after revision: 18 August 2025
Accepted Manuscript online:
18 August 2025
Article published online:
09 September 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a León Rojas AF, Kyne SH, Chan PWH. Acc Chem Res 2023; 56: 1406
- 1b Bhoyare VW, Tathe AG, Das A, Chintawar CC, Patil NT. Chem Soc Rev 2021; 50: 10422
- 1c Wang T, Hashmi ASK. Chem Rev 2021; 121: 8948
- 1d Campeau D, León Rayo DF, Mansour A, Muratov K, Gagosz F. Chem Rev 2021; 121: 8756
- 1e Mato M, Franchino A, García-Morales C, Echavarren AM. Chem Rev 2021; 121: 8613
- 1f Chintawar CC, Yadav AK, Kumar A, Sancheti SP, Patil NT. Chem Rev 2021; 121: 8478
- 1g Collado A, Nelson DJ, Nolan SP. Chem Rev 2021; 121: 8559
- 1h Witzel S, Hashmi ASK, Xie J. Chem Rev 2021; 121: 8868
- 1i Ye L-W, Zhu X-Q, Sahani RL, Xu Y, Qian P-C, Liu R-S. Chem Rev 2021; 121: 9039
- 1j Zheng Z-T, Ma X, Cheng X-P. et al. Chem Rev 2021; 121: 8979
- 1k Wang W-L, Ji C-L, Liu K, Zhao C-G, Li W-P, Xie J. Chem Soc Rev 2021; 50: 1874
- 2a Gade AB, Urvashi Patil NT. Org Chem Front 2024; 11: 1858
- 2b Wu Y-F, Yang H, Gao H-J, Huang X-Y, Geng L-Y, Zhang R. Catalysts 2023; 13: 1294
- 2c Bao M, Zhou S, Hu W-H, Xu X-F. Chin Chem Lett 2022; 33: 4969
- 2d Zuccarello G, Escofet I, Caniparoli U, Echavarren AM. ChemPlusChem 2021; 86: 1283
- 2e Milcendeau P, Sabat N, Ferry A, Guinchard X. Org Biomol Chem 2020; 18: 6006
- 2f Li Y-Y, Li W-B, Zhang J-L. Chem Eur J 2017; 23: 467
- 2g Zi W-W, Toste FD. Chem Soc Rev 2016; 45: 4567
- 3a Fang S, Liu Z, Wang F, Wang T. Acc Chem Res 2025; 58: 2088
- 3b Zhang Z-X, Hu T-Q, Ye L-W, Zhou B. Synthesis 2024; 56: 2316
- 3c Roos CB, Chiang C-H, Murray LAM, Yang D, Schulert L, Narayan ARH. Chem Rev 2023; 123: 10641
- 3d Mei G-J, Koay WL, Guan C-Y, Lu Y-X. Chem 2022; 8: 1855
- 3e Carmona JA, Rodríguez-Franco C, Fernández R, Hornillos V, Lassaletta JM. Chem Soc Rev 2021; 50: 2968
- 3f Cheng JK, Xiang S-H, Li S, Ye L, Tan B. Chem Rev 2021; 121: 4805
- 3g Cui Y, Wang Y-B, Liu H-H, Xiang S-H, Tan B. J Am Chem Soc 2025; 147: 3450
- 3h Wang W, Jiang M, Li J. et al. J Am Chem Soc 2024; 146: 16567
- 3i Gou B-B, Shen W-J, Gao Y-J, Gu Q, You S-L. Angew Chem Int Ed 2025; 64: e202502131
- 3j Qian P-F, Wu Y-X, Hu J-H. et al. J Am Chem Soc 2025; 147: 10791
- 3k Chen H-H, Jiang J-T, Yang Y-N, Ye L-W, Zhou B. Angew Chem Int Ed 2025; 64: e202505167
- 3l Ma X, Tan M, Li L. et al. Nat Chem 2024; 16: 42
- 3m Ye Z, Xie W, Wang D, Liu H, Yang X. ACS Catal 2024; 14: 4958
- 3n Jiang H, He X-K, Jiang X. et al. J Am Chem Soc 2023; 145: 6944
- 3o Jana K, Zhao Z, Musies J, Sparr C. Angew Chem Int Ed 2024; 63: e202408159
- 3p Guo MC, Miller SJ. ACS Catal 2024; 14: 17226
- 4a Mori T. Chem Rev 2021; 121: 2373
- 4b Narcis MJ, Takenaka N. Eur J Org Chem 2014; 21
- 4c Shen Y, Chen C-F. Chem Rev 2012; 112: 1463
- 4d Li C, Feng J, Liu Z. et al. Angew Chem Int Ed 2025; e202508789
- 4e Xu W-L, Zhang R-X, Wang H, Chen J, Zhou L. Angew Chem Int Ed 2024; 63: e202318021
- 4f Wu J-H, Fang S, Zheng X. et al. Angew Chem Int Ed 2023; 62: e202309515
- 4g Liu W, Qin T, Xie W, Zhou J, Ye Z, Yang X. Angew Chem Int Ed 2023; 62: e202303430
- 4h Li C, Shao Y-B, Gao X. et al. Nat Commun 2023; 14: 3380
- 4i Guo S-M, Huh S, Coehlo M, Shen L, Pieters G, Baudoin O. Nat Chem 2023; 15: 872
- 4j Wang Q, Zhang W-W, Zheng C, Gu Q, You S-L. J Am Chem Soc 2021; 143: 114
- 5a Chen J-F, Gao Q-X. et al. Chem Commun 2024; 60: 6728
- 5b Zhao Y-H, Zhu D, Chen Z-M. ChemCatChem 2024; 16: e202401312
- 5c Laws D, Poff CD, Heyboer EM, Blakey SB. Chem Soc Rev 2023; 52: 6003
- 5d López R, Palomo C. Angew Chem Int Ed 2022; 61: e202113504
- 5e Huang F-R, Teng M-Y, Qiu H, Yao Q-J, Shi B-F. Angew Chem Int Ed 2025; 64: e202506465
- 5f Zhou Z-X, Fu Y-L-T, Zhang C. et al. J Am Chem Soc 2025; 147: 3223
- 5g Yang G, He Y, Wang T, Li Z, Wang J. Angew Chem Int Ed 2024; 63: e202316739
- 5h Lv X, Su F, Long H. et al. Nat Commun 2024; 15: 958
- 5i Zhu D, Mu T, Li Z-L. et al. Angew Chem Int Ed 2024; 63: e202318625
- 5j Yu S, Bao H, Zhang D, Yang X. Nat Commun 2023; 14: 5239
- 5k Zhou L, Cheng H-G, Li L. et al. Nat Chem 2023; 15: 815
- 5l Gagnon C, Godin É, Minozzi C, Sosoe J, Pochet C, Collins SK. Science 2020; 367: 917
- 6 Shibuya T, Nakamura K, Tanaka K. Beilstein J Org Chem 2011; 7: 944
- 7 Satoh M, Shibata Y, Kimura Y, Tanaka K. Eur J Org Chem 2016; 2016: 4465
- 8 Zhang J-W, Simon M, Golz C, Alcarazo M. Angew Chem Int Ed 2020; 59: 5647
- 9 Zuccarello G, Nannini LJ, Arroyo-Bondía A. et al. JACS Au 2023; 3: 1742
- 10 Gaignard-Gaillard Q, Han X, Alix A. et al. Adv Synth Catal 2022; 364: 4415
- 11a Yang H, Chen J, Zhou L. Chem – Asian J 2020; 15: 2939
- 11b Min X-L, Zhang X-L, Shen R, Zhang Q, He Y. Org Chem Front 2022; 9: 2280
- 12 Zhao Y, Liu N-N, Zhong S-P, Wen Z-W, Wang T. Org Lett 2022; 24: 2842
- 13 Sun Y, Sun L-Z, Zhang S-T, Zhang Z-T, Wang T. Org Lett 2024; 26: 4773
- 14 Wang Y-B, Liu W, Li T. et al. J Am Chem Soc 2024; 146: 33804
- 15 Guo R, Li K-N, Zhu H-J, Fan Y-M, Gong L-Z. Chem Commun 2014; 50: 5451
- 16a Dreher SD, Katz TJ, Lam K-C, Rheingold AL. J Org Chem 2000; 65: 815
- 16b Paruch K, Katz TJ, Incarvito C, Lam K-C, Rhatigan B, Rheingold AL. J Org Chem 2000; 65: 7602
- 16c Nuckolls C, Katz TJ, Castellanos L. J Am Chem Soc 1996; 118: 3767
- 17a Carreño MC, Hernandez-Sanchez R, Mahugo J, Urbano A. J Org Chem 1999; 64: 1387
- 17b Carreño MC, Garcia-Cerrada S, Urbano A. J Am Chem Soc 2001; 123: 7929
- 17c Carreño MC, Garcia-Cerrada S, Urbano A. Chem – Eur J 2003; 9: 4118
- 17d Carreño MC, Gonzalez-Lopez M, Urbano A. Chem Commun 2005; 5: 611
- 18a Stará IG, Starý I, Kollácrovič A, Teplý F, Vyskočil S, Saman D. Tetrahedron Lett 1999; 40: 1993
- 18b Heller B, Hapke M, Fischer C, Andronova A, Starý I, Stará IG. J Organomet Chem 2013; 723: 98
- 18c Jančařík A, Rybáček J, Cocq K. et al. Angew Chem Int Ed 2013; 52: 9970
- 19a Tanaka K, Kamisawa A, Suda T, Noguchi K, Hirano M. J Am Chem Soc 2007; 129: 12078
- 19b Sawada Y, Furumi S, Takai A, Takeuchi M, Noguchi K, Tanaka K. J Am Chem Soc 2012; 134: 4080
- 19c Kimura Y, Fukawa N, Miyauchi Y, Noguchi K, Tanaka K. Angew Chem Int Ed 2014; 53: 8480
- 19d Kinoshita S, Yamano R, Shibata Y. et al. Angew Chem Int Ed 2020; 59: 11020
- 20a Caeiro J, Peña D, Cobas A, Pérez D, Guitián E. Adv Synth Catal 2006; 348: 2466
- 20b Yubuta A, Hosokawa T, Gon M. et al. J Am Chem Soc 2020; 142: 10025
- 21 Nakamura K, Furumi S, Takeuchi M, Shibuya T, Tanaka K. J Am Chem Soc 2014; 136: 5555
- 22 Usui K, Yamamoto K, Ueno Y. et al. Chem Eur J 2018; 24: 14617
- 23 González-Fernández E, Nicholls LDM, Schaaf LD, Farès C, Lehmann CW, Alcarazo M. J Am Chem Soc 2017; 139: 1428
- 24 Nicholls LDM, Marx M, Hartung T, González-Fernández E, Golz C, Alcarazo M. ACS Catal 2018; 8: 6079
- 25 Satoh M, Shibata Y, Tanaka K. Chem Eur J 2018; 24: 5434
- 26 Hartung T, Machleid R, Simon M, Golz C, Alcarazo M. Angew Chem Int Ed 2020; 59: 5660
- 27 Pelliccioli V, Hartung T, Simon M. et al. Angew Chem Int Ed 2022; 61: e202114577
- 28 Zhang J-W, Simon M, Golz C, Alcarazo M. Isr J Chem 2023; 63: e202200043
- 29 Redero P, Hartung T, Zhang J-W. et al. Angew Chem Int Ed 2020; 59: 23527
- 30 Fu W, Pelliccioli V, Geyso M. et al. Adv Mater 2023; 35: 2211279
- 31 Fu W, Pelliccioli V, Casares-López R. et al. CCS Chem 2024; 6: 2439
- 32 Urbano A, Hernández-Torres G, del Hoyo AM, Martinez-Carrión A, Carreño MC. Chem Commun 2016; 52: 6419
- 33 Zhang P-C, Li Y-L, He J-F, Wu H-H, Li Z-M, Zhang J-L. Nat Commun 2021; 12: 4609
- 34 Zhou Q, Qiao L, Zhang A-A. et al. Green Synth Catal 2025; 6: 198
- 35 Murai M, Sota Y, Onohara Y, Uenishi J, Uemura M. J Org Chem 2013; 78: 10986
For recent selected reviews on the gold-catalyzed alkyne transformations:
For recent selected reviews on gold-catalyzed enantioselective synthesis of central chirality, see:
For recent selected reviews on axial chirality, see:
For recent selected works on axial chirality, see:
For recent selected reviews on application of helicene, see:
For recent selected works on axial chirality, see:
For recent selected reviews on planar chirality, see:
For recent selected works on axial chirality, see:
For recent selected reviews on central-to-axial chirality conversion strategy, see:
For selected examples of diastereoisomer resolution of racemic helicenes, see:
For selected examples of synthesizing helicenes through chiral auxiliaries, see:
For selected examples of nickel-catalyzed enantioselective synthesis of helicenes, see:
For selected examples of rhodium-catalyzed enantioselective synthesis of helicenes, see:
For selected examples of palladium-catalyzed enantioselective synthesis of helicenes, see: