Subscribe to RSS
DOI: 10.1055/a-2654-5235
Exploring the Antiproliferative Potential of Aurone Derivatives through In Vitro Assays and a Network Pharmacology Study
This research was supported by a grant from the Council of Scientific & Industrial Research (CSIR), New Delhi [CSIR Extramural Research Grant No. 02(0329)/17/EMR].

Abstract
Aurones, a subclass of flavonoids, are recognized for their diverse biological activities, including anticancer properties. This study is focused on the synthesis and antiproliferative evaluation of a series of aurone derivatives to investigate their potential as anticancer chemotherapeutic agents. The synthesis of aurone derivatives is achieved via the mercuric acetate catalyzed condensation of appropriately substituted 2-hydroxychalcones. The aurone derivatives are evaluated in vitro against the MCF-7 human breast cancer cell line and the H460 lung cancer cell line. The p-dimethylamino-substituted aurone derivative (Z)-2-(4-(dimethylamino)benzylidene)benzofuran-3(2H)-one demonstrates a moderate antiproliferative effect at a 200 μg/mL concentration against the tested cancer cell lines. Furthermore, an in silico network pharmacology study reveals various targets for the above aurone derivative, which has a potential role in cancer progression. Therefore, this study provides essential information to enable selection of a suitable target to design aurone derivatives using a molecular modeling approach.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2654-5235.
- Supporting Information
Publication History
Received: 22 May 2025
Accepted after revision: 13 July 2025
Accepted Manuscript online:
13 July 2025
Article published online:
04 August 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 Suryawanshi SN, Chandra N, Kumar P, Porwal J, Gupta S. Eur. J. Med. Chem. 2008; 43: 2473
- 2 Verma AK, Koul S, Pannu AP, Razdan TK. Tetrahedron 2007; 63: 8715
- 3 Stevens JF, Page JE. Phytochemistry 2004; 65: 1317
- 4 Haudecoeur R, Boumendjel A. Curr. Med. Chem. 2012; 19: 2861
- 5 Nishida J, Kawabata J. Biosci. Biotechnol. Biochem. 2006; 70: 193
- 6 Jung JC, Jang S, Lee Y, Min D, Lim E, Jung H, Oh M, Oh S, Jung M. J. Med. Chem. 2008; 51: 4054
- 7 Manjulatha K, Srinivas S, Mulakayala N, Rambabu D, Prabhakar M, Arunasree KM, Alvala M, Basaveswara Rao MV, Pal M. Bioorg. Med. Chem. Lett. 2012; 22: 6160
- 8 Auf’mkolk M, Koehrle J, Hesch R.-D, Cody V. J. Biol. Chem. 1986; 261: 11623
- 9 Lee YR, Hwang JK, Koh HW, Jang KY, Lee JH, Park JW, Park BH. Life Sci. 2012; 90: 799
- 10 Le J, Lu W, Xiong X, Wu Z, Chen W. Molecules 2015; 20: 18496
- 11 Kim YJ, Uyama H. Cell. Mol. Life Sci. 2005; 62: 1707
- 12 Okombi S, Rival D, Bonnet S, Mariotte AM, Perrier E, Boumendjel A. J. Med. Chem. 2006; 49: 329
- 13 Geissman TA, Harborne JB. J. Am. Chem. Soc. 1955; 77: 4622
- 14 Varma RS, Varma M. Tetrahedron Lett. 1992; 33: 5937
- 15 Lathwal E, Kumar S, Sahoo PK, Ghosh S, Mahata S, Nasare VD, Kapavarapu R, Kumar S. Heliyon 2024; 10: e26843
- 16 Demirayak S, Yurttas L, Gundogdu-Karaburun N, Karaburun AC, Kayagil I. J. Enzyme Inhib. Med. Chem. 2015; 30: 816
- 17 Acharya PC, Bansal R. Arch. Pharm. Chem. Life Sci. 2014; 347: 193
- 18 Chalcones 3; General Procedure To a solution of NaOH (0.1 g, 2.5 mmol) dissolved in MeOH (10 mL) was added m-hydroxyacetophenone (1). Next, a solution of aldehyde 2 in MeOH (10 mL) was added dropwise with stirring. The progress of the reaction was monitored by TLC. Upon completion of the reaction, solvent was evaporated and water was added to the remaining residue. The solution was neutralized using acetic acid to obtain solid precipitate which was vacuum filtered, washed with water, dried and recrystallized from MeOH to obtain the chalcone derivative 3. (E)-3-(4-(Dimethylamino)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (3a) Yield: 77%; dark red solid; mp 177–179 °C. FT-IR (neat): 1603, 1576, 1520, 1482, 1430, 1374, 1337, 1310, 1276, 1234 cm–1. 1H NMR (500 MHz, CDCl3): δ = 3.04 (s, 6 H, N(CH 3)2), 6.68 (d, J = 9 Hz, 2 H, ArH), 6.91 (t, J = 7 Hz, 1 H, ArH), 6.99 (dd, J = 9.5 Hz, 1 H, CH=CH-Ar), 7.43 (m, 2 H, ArH), 7.55 (dd, J = 9 Hz, 2 H, ArH), 7.89 (t, 2 H, ArH and OC-CH=CH; merged), 13.20 (s, 1 H, Ar-OH). 13C NMR (125 MHz, CDCl3): δ = 40.16 (N(CH3)2), 111.93 (CH=CH-Ar), 114.36–135.63 (8 C, Ar-C), 146.48 (O=C-CH=CH), 152.21 (Ar-C-N-(CH3)2), 163.48 (Ar-C-OH), 193.48 (C=O). HRMS (ESI): m/z calcd for C17H17NO2: 267.3224; found: 268.1341 [M + H]+. (E)-3-(4-Bromophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (3e) Yield 72%; yellow solid; mp 146–148 °C. FT-IR (neat): 2359, 2340, 1641, 1572, 1562, 1552, 1482, 1436, 1367, 1335, 1298, 1263, 1200, 1175, 1146, 1067, 1020, 1004 cm–1. 1H NMR (500 MHz, CDCl3): δ = 6.93 (t, 1 H, ArH), 7.01 (d, J = 8.5 Hz, 1 H, CH=CH-Ar), 7.50 (m, 3 H, ArH), 7.55 (d, J = 4.5 Hz, 2 H, ArH), 7.61 (d, J = 15 Hz, 1 H, O=C-CH=CH), 7.82 (d, J = 15.5 Hz, 1 H, ArH), 7.88 (d, J = 1.5 Hz, 1 H, ArH), 12.73 (s, 1 H, Ar-OH). 13C NMR (125 MHz, CDCl3): δ = 118.69 (CH=CH-Ar), 118.90–136.55 (Ar-C), 143.96 (O=C-CH=CH), 163.62 (Ar-C-OH), 193.42 (Ar-C=O). HRMS (ESI): m/z calcd for C15H12 79BrO2: 301.9942; found: 303.0018; m/z calcd for C15H11 81BrO2: calculated: 303.9922; found 304.9998 [M + H]+.
- 19 Aurones 4; General Procedure To a solution of mercuric acetate (0.32 g, 1 mmol) in pyridine (6 mL) was added the α,β-unsaturated carbonyl compound 3 (1 mmol) and the resulting mixture was refluxed at 110 °C for 6 h. After completion of the reaction, as indicated by TLC, the mixture was poured into ice-cold water and acidified with HCl (10%). The precipitated solid was filtered under vacuum, washed with water, dried over silica, and recrystallized from EtOH to afford the aurone derivative 4. (Z)-2-(4-(Dimethylamino)benzylidene)benzofuran-3(2H)-one (4a) Yield: 72%; dark red solid; mp 181–183 °C. FT-IR (neat): 2361, 2337, 1674, 1627, 1603, 1567, 1529, 1467, 1435, 1373, 1295, 1215, 1177, 1149, 1111 cm–1. 1H NMR (500 MHz, CDCl3): δ = 3.02 (s, 6 H, N(CH 3)2), 6.71 (d, J = 8.5 Hz, 2 H, ArH), 6.89 (s, 1 H, Ar=CH-Ar), 7.16 (t, J = 7 Hz, 1 H, ArH), 7.27 (t, J = 8.5 Hz, 1 H, ArH), 7.56 (t, J = 7 Hz, 1 H, ArH), 7.79 (m, 3 H, ArH). 13C NMR (125 MHz, CDCl3): δ = 40.10 (N(CH3)2), 112.03 (Ar=CH-Ar), 112.77–135.82 (7 C, Ar-C), 145.04 (Ar=CH-Ar), 151.24 (Ar-C-N(CH3)2), 165.27 (Ar-C-O-Ar), 183.93 (C=O). HRMS (ESI): m/z calcd for C17H15NO2: 265.3065; found: 266.1185 [M + H]+. (Z)-2-(4-Bromobenzylidene)benzofuran-3(2H)-one (4e) Yield: 80%; pale yellow solid; mp 203–206 °C. FT-IR (neat): 2360, 2339, 1710, 1653, 1600, 1483, 1461, 1401, 1296, 1204, 1185, 1126, 1109, 1097, 1069, 1006 cm–1. 1H NMR (500 MHz, CDCl3): δ = 6.77 (s, 1 H, Ar=CH-Ar), 7.20 (t, J = 7 Hz, 1 H, ArH), 7.22 (d, J = 5 Hz, 1 H, ArH), 7.55 (d, J = 5 Hz, 2 H, ArH), 7.64 (t, J = 7.5 Hz, 1 H, ArH), 7.77 (d, J = 2 Hz, 2 H, ArH), 7.79 (d, J = 1.5 Hz, 1 H, ArH). 13C NMR (125 MHz, CDCl3): δ = 111.56 (Ar=CH-Ar), 112.95–137.07 (11 C, Ar-C), 147.07 (Ar=CH-Ar), 166.07 (Ar-C-O-Ar), 184.59 (Ar-C=O). HRMS (ESI): m/z calcd for C15H9 79BrO2: 299.9786; found: 300.9862 [M + H]+; m/z calcd for C15H9 81BrO2: 301.1348, found: 302.9842 [M + H]+.
- 20 Nguyen TT, Dang TN, Dao MQ, Vo VT, Tran OT, Vu LT, Tran TD. Bioorg. Med. Chem. Lett. 2024; 98: 129574
- 21 Xie Y, Kril LM, Yu T, Zhang W, Frasinyuk MS, Bondarenko SP, Kondratyuk KM, Hausman E, Martin ZM, Wyrebek PP, Liu X. Sci. Rep. 2019; 9: 6439
- 22 Alsayari A, Muhsinah AB, Hassan MZ, Ahsan MJ, Alshehri JA, Begum N. Eur. J. Med. Chem. 2019; 166: 417
- 23 Mishra B, Brahma U, Bhandari V, Bhattacharjee S, Acharya PC, De UC. J. Indian Chem. Soc. 2025; 102: 101740
- 24 Wang L, Świtalska M, Mei ZW, Lu WJ, Takahara Y, Feng XW, El-Sayed IE. T, Wietrzyk J, Inokuchi T. Bioorg. Med. Chem. 2012; 20: 4820
- 25 http://www.swisstargetprediction.ch/ (accessed Jul. 24, 2025)
- 26 https://www.genecards.org/ (accessed Jul. 24, 2025)
- 27 https://bioinformatics.psb.ugent.be/webtools/Venn/ (accessed Jul. 24, 2025)
- 28 https://cn.string-db.org (accessed Jul. 24, 2025)
- 29 http://bioinformatics.sdstate.edu/go (accessed Jul. 24, 2025)
- 30 https://www.bioinformatics.com.cn/en (accessed Jul. 24, 2025)