RSS-Feed abonnieren
DOI: 10.1055/a-2643-4742
Catalyst-Free Mild Fusion of DBU with Pyrrolyl-Pyridinium Chlorides Involving Acylethynylpyrroles
This work was financially supported by a grant from the Russian Science Foundation (project no. 21-73-10134).

Abstract
A widely known strong base DBU undergoes mild fusion with 2-acylethynylpyrroles (room temperature, no catalyst, MeCN, 24 h, extraction with CHCl3) to afford condensed diazaheterocyclic systems incorporating pyrrolyl-pyridinium chlorides, 3-(1H-pyrrol-2-yl)-1-aryl-5,6,7,8,9,10-hexahydro-4H-6a-aza-3a-azoniacyclohepta[1,2,3-de]naphthalene chlorides, in 56–90% yields. The synthesized compounds are water soluble and exhibit weak blue-green fluorescence at 506–555 nm.
Keywords
Acylethynylpyrroles - DBU - Pyrrolyl-pyridinium hydroxide - Pyrrolyl-pyridinium chloride - FluorescencePublikationsverlauf
Eingereicht: 17. April 2025
Angenommen nach Revision: 25. Juni 2025
Accepted Manuscript online:
25. Juni 2025
Artikel online veröffentlicht:
04. August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Ionescu A, Godbert N, Termine R. et al. Inorg Chem 2021; 60: 9287
- 1b Lagu SB, Yejella RP, Nissankararao S. et al. PLoS One 2022; 17: e0265068
- 1c Mohan Mallisetty N, Ganipisetti H, Majhi D, Putta NK. Asian J Chem 2023; 35: 468
- 2a Siegel S, Siegel F, Schulze V. et al. WO2021198020 A1; 2021
- 2b Koltun ES, Cregg J, Gill AL. et al. US2021130303A1; 2021
- 2c Chelvam V, Dudhe P, Asha Krishnan M, Sonawane A. WO2021014463 A1; 2021
- 2d Oh S, Kwon DY, Choi I. et al. ACS Med Chem Lett 2021; 12: 563
- 2e Wu Q, Young B, Wang Y, Davidoff AM, Rankovic Z, Yang J. J Med Chem 2022; 65: 9564
- 3 Lehuédé J, Fauconneau B, Barrier L, Ourakow M, Piriou A, Vierfond J. Eur J Med Chem 1999; 34: 991
- 4 de Laszlo SE, Visco D, Agarwal L. et al. Bioorg Med Chem Lett 1998; 8: 2689
- 5a de Laszlo SE, Chang LL, Kim D, Mantlo NB. EP0859771A1; 1996
- 5b Petrova OV, Tomilin DN, Şenol H. et al. J Mol Struct 2024; 1315: 138998
- 6a Curreli F, Ahmed S, Benedict Victor SM. et al. J Med Chem 2020; 63: 1724
- 6b Losada N, Ruiz FX, Curreli F. et al. J Med Chem 2021; 64: 16530
- 7 Mir NA, Ramaraju P, Vanaparthi S. et al. New J Chem 2020; 44: 16329
- 8 Zhou E, Liu Y, Wang H, Wang J, Shao N, Wu G. WO2021190616 A1; 2021
- 9 Raines RT, Vasta J. US2016280701A1; 2016
- 10 Palczewski K, Chen Y. WO2021173929A1; 2021
- 11 Burns CJ, Coburn G, Liu B. et al. WO2021119081A1; 2021
- 12 Ruengsatra T, Meeprasert A, Rattanangkool E. et al. RSC Adv 2023; 13: 29004
- 13 Chen T, Zhao S, Huang W, Wang M, Gong Y. CN114349737A; 2022
- 14 Yoo JH, Lim SI, Lee GH. et al. KR20220097863A; 2022
- 15 Starnovskaya ES, Valieva MI, Kopchuk DS. et al. New J Chem 2023; 47: 21720
- 16 Xu W, Wang J, Xu C, Hua J, Wang YJ. Mater Chem B 2021; 9: 8842
- 17a Klappa JJ, Geers SA, Schmidtke SJ, MacManus-Spencer LA, McNeill K. Dalton Trans 2004; 883
- 17b Wang H, Zeng Y, Ma JS. et al. Chem Commun 2009; 5457
- 17c Pucci D, Aiello I, Aprea A, Bellusci A, Crispini A, Ghedini M. Chem Commun 2009; 1550
- 17d Annunziata L, Pappalardo D, Tedesco C, Pellecchia C. Macromolecules 2009; 42: 5572
- 17e Gowda AS, Petersen JL, Milsmann C. Inorg Chem 1919; 2018: 57
- 17f Yadav S, Singh A, Rashid N. et al. ChemistrySelect 2018; 3: 9469
- 18 Chen C-Y, Feng Y-M, Wu T-Y. et al. ACS Appl Energy Mater 2021; 4: 13461
- 19 Wang J-W, Ma F, Jin T. et al. J Am Chem Soc 2023; 145: 676
- 20 Chen J-J, Xu Y-C, Gan Z-L, Peng X, Yi X-Y. Eur J Inorg Chem 2019; 2019: 1733
- 21 García MA, Farrán MA, María DS. et al. Molecules 2015; 20: 9862
- 22 Liu X-H, Zhang L-B, Wang J-L. et al. Inorg Chem 2024; 63: 9058
- 23a Guo M, Zhang Y, Zhang M-J, Li T, Wu J-Y, Liu F-S. Organometallics 2023; 42: 2028
- 23b Hu Y, Gao Y, Ye J. et al. Org Lett 2023; 25: 2975
- 23c Tsunokawa R, Karuo Y, Tarui A. et al. Eur J Org Chem 2023; 26: e202300885
- 23d Afratis K, Bateman JM, Rahemtulla BF. et al. Org Lett 2023; 25: 461
- 23e Zhao Z, Liu M, Zhou K. et al. Catal Sci Technol 2023; 13: 4207
- 23f Jhun BH, Jang J, Lee S, Cho EJ, You Y. Nat Commun 2024; 15: 6586
- 23g Jin H, Zhou F, Xiang Z. et al. Adv Synth Catal 2024; 366: 942
- 23h Niyaz Vellala Syed Ali M, Liu L, Ravi M, Doucet H. ChemCatChem 2024; 16: e202301226
- 23i Alvarez EM, Stewart G, Ullah M, Lalisse R, Gutierrez O, Malapit CA. J Am Chem Soc 2024; 146: 3591
- 24a Trofimov BA, Stepanova ZV, Sobenina LN, Mikhaleva AI, Ushakov IA. Tetrahedron Lett 2004; 45: 6513
- 24b Trofimov BA, Sobenina LN. Targets in heterocyclic systems. In Società Chimica Italiana. Attanasi OA, Spinelli D. eds. Vol 13. Roma: 2009: 92-119
- 24c Sobenina LN, Trofimov BA. Molecules 2020; 25: 2490
- 25a Sobenina LN, Sagitova EF, Markova MV, Ushakov IA, Ivanov AV, Trofimov BA. Tetrahedron Lett 2018; 59: 4047
- 25b Sagitova EF, Sobenina LN, Tomilin DN, Markova MV, Ushakov IA, Trofimov BA. Mendeleev Commun 2019; 29: 252
- 26 Tomilin DN, Sobenina LN, Ushakov IA, Trofimov BA. Synthesis 2021; 53: 1137
- 27 Tomilin DN, Sobenina LN, Saliy IV, Ushakov IA, Belogolova AM, Trofimov BA. New J Chem 2022; 46: 13149
- 28 Trofimov BA, Sobenina LN, Petrova OV. et al. J Org Chem 2024; 89: 18142
- 29 Huang B, Yin L, Cai M. New J Chem 2013; 37: 3137
- 30 Stein PM, Pascher J, Stracke J. et al. Adv Synth Catal 2022; 364: 3817
- 31a Trofimov BA, Belyaeva KV. Tetrahedron Lett 2020; 61: 151991
- 31b Trofimov BA, Mal’kina AG. Synthesis 2021; 53: 2740
- 31c Charushin VN, Verbitskiy EV, Chupakhin ON. et al. Russ Chem Rev 2024; 93: RCR5125
- 32 Bakulina O, Merkt FK, Knedel T-O, Janiak C, Müller TJJ. Angew Chem Int Ed 2018; 57: 17240
- 33 Dhara A, Sadhukhan T, Sheetz EG, Olsson AH, Raghavachari K, Flood AH. J Am Chem Soc 2020; 142: 12167
- 34 Liu H, Jiang G, Ke G, Ren T-B, Yuan L. ChemPhotoChem 2024; 8: e202300277
- 35 Lakowicz JR. Principles of Fluorescence Spectroscopy. Boston, MA: Springer US; 2006
- 36 Tucker SA, Amszi VL, Acree WE. J Chem Educ 1992; 69: A8