Subscribe to RSS
DOI: 10.1055/a-2637-3568
Electrocatalytic Deoxyfluorination of Benzyl Alcohols with SF6 as a Fluorinating Agent
Supported by: Anhui Electric Power Research Institute of State Grid B3120523000Z

Abstract
Emerging as the basic structural units in a variety of bioactive molecules, developing straightforward and efficient methods for synthesizing benzylic fluorinated compounds is of considerable significance. Herein, an electrocatalytic strategy utilizing sulfur hexafluoride (SF6) as a fluorinating reagent to transform benzylic alcohols into benzyl fluorides has been developed under mild conditions. This reaction is compatible with several substrate backbones and avoids the excessive usage of chemical reductants, which provides new routes for the efficient utilization and degradation of SF6, the potent greenhouse gas.
Publication History
Received: 15 April 2025
Accepted after revision: 16 June 2025
Accepted Manuscript online:
16 June 2025
Article published online:
24 July 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Müller K, Faeh C, Diederich F. Science 1881; 2007: 317
- 1b O’Hagan D. Chem Soc Rev 2008; 37: 308
- 1c Furuya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
- 1d Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J Med Chem 2015; 58: 8315
- 1e Aggarwal T, Sushmita Verma AK. Org Chem Front 2021; 8: 6452
- 1f Sorlin AM, Usman FO, English CK, Nguyen HM. ACS Catal 2020; 10: 11980
- 2a Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. 2nd ed Weinheim: Wiley-VCH; 2013
- 2b Purser S, Moore PR, Swallow S, Gouverneur V. Chem Soc Rev 2008; 37: 320
- 2c Hagmann WK. J Med Chem 2008; 51: 4359
- 2d Kirk KL. Org Process Res Dev 2008; 12: 305
- 2e Zhou Y, Wang J, Gu Z. et al. Chem Rev 2016; 116: 422
- 2f Fujiwara T, O’Hagan D. J Fluorine Chem 2014; 167: 16
- 2g Berger R, Resnati G, Metrangolo P, Weber E, Hulliger J. Chem Soc Rev 2011; 40: 3496
- 2h Hiyama T, Yamamoto H. Organofluorine Compounds. Berlin, Heidelberg: Springer; 2000
- 3a Yin XM, Chen B, Qiu F. et al. ACS Catal 1954; 2020: 10
- 3b Zhang Q, Mixdorft JC, Reynders GJ, Nguyen HM. Tetrahedron 2015; 71: 5932
- 3c Meanwell M, Adluri BS, Yuan Z. et al. Chem Sci 2018; 9: 5608
- 4a Vasilopoulos A, Golden DL, Buss JA, Stahl SS. Org. Lett. 2020; 22: 5753
- 4b Danahy KE, Cooper JC, Van Humbeck JF. Angew Chem Int Ed 2018; 57: 5134
- 4c Xia JB, Zhu C, Chen C. J Am Chem Soc 2013; 135: 17494
- 4d Zhang Q, Yin X-S, Chen K, Zhang S-Q, Shi B-F. J Am Chem Soc 2015; 137: 8219
- 4e Nielsen MK, Ahneman DT, Riera O, Doyle AG. J Am Chem Soc 2018; 140: 5004
- 4f Sladojevich F, Arlow SI, Tang P, Ritter T. J Am Chem Soc 2013; 135: 2470
- 4g Li L, Ni C, Wang F, Hu J. Nat Commun 2016; 7: 11320
- 4h Zhao SY, Guo Y, Su ZB, Cao W, Wu CY, Chen QY. Org Lett 2020; 22: 8634
- 4i Sheng J, Ni H-Q, Zhang H-R, Zhang K-F, Wang Y-N, Wang X-S. Angew Chem Int Ed 2018; 57: 7634
- 5a Yoshida J, Kataoka K, Horcajada R, Nagaki A. Chem Rev 2008; 108: 2265
- 5b Torii S. Electroorganic Reductions. Vols 1 and 2 Tokyo: Kodansha; 2006
- 5c Organic Electrochemistry. Lund H, Hammerich O, Dekker, eds. 4th edn; 2000
- 5d Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R. Green Chem 2010; 12: 2099
- 5e Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew Chem Int Ed 2018; 57: 5594
- 5f Fuchigami T, Inagi S. Acc Chem Res 2020; 53: 322
- 5g Heard DM, Lennox AJJ. Angew Chem Int Ed 2020; 59: 18866
- 5h Yan M, Kawamata Y, Baran PS. Chem Rev 2017; 117: 13230
- 5i Malapit CA, Prater MB, Cabrera-Pardo JR. et al. Chem Rev 2022; 122: 3180
- 6a Fuchigami T, Inagia S. Chem Commun 2011; 47: 10211
- 6b Stangier M, Scheremetjew A, Ackermann L. Chem – Eur J 2022; 28: e202201654
- 6c Mandal A, Jang J, Yang B, Kim H, Shin K. Org Lett 2023; 25: 195
- 6d Atkins AP, Chaturvedi AK, Tateb JA, Lennox AJJ. Org Chem Front 2024; 11: 802
- 7a Maiss M, Brenninkmeijer CAM. Environ Sci Technol 1998; 32: 3077
- 7b Shi SY, Li Y, Cui ZL. et al. Chem Eng J 2023; 470: 144166
- 8a Rombach D, Wagenknecht HA. ChemCatChem 2018; 10: 2955
- 8b McTeague TA, Jamison TF. Angew Chem Int Ed 2016; 55: 15072
- 8c Rombach D, Wagenknecht HA. Angew Chem Int Ed 2020; 59: 300
- 8d Rombach D, Birenheide B, Wagenknecht HA. Chem – Eur J 2021; 27: 8088
- 8e Kim S, Khomutnyk Y, Bannykh A, Nagorny P. Org Lett 2021; 23: 190
- 8f Rombach D, Wagenknecht HA. Synthesis 2022; 54: 4883
- 8g Tomar P, Braun T, Kemnitz E. Chem Commun 2018; 54: 9753
- 8h Eder T, Buß F, Wilm LFB, Seidl M, Podewitz M, Dielmann F. Angew Chem Int Ed 2022; 61: e202209067
- 8i Rueping M, Nikolaienko P, Lebedev Y, Adams A. Green Chem 2017; 19: 2571
- 8j Huang Y-L, Zhang Q-Q, Wang C-Y, Zhao Y, Wang X-S. Org Lett 2024; 26: 5776
- 8k Zuo Y-W, Zhao Y, Zhang Y-F. et al. Org Lett 2024; 26: 5652
- 8l Zhao Y, Ma F, Chen Y. et al. Org Biomol Chem 2025; 23: 1094
- 8m Chen Y, Gu S, Zhao Y. et al. Green Chem 2025; 27: 2921
- 9 Zhang Y-F, Zhu S, Zuo Y-W, Liu H, Jin R-X, Wang X-S. Green Chem 2024; 26: 10324
- 10 Kim S, Nagorny P. Org Lett 2022; 24: 2294
Selected examples for the synthesis of benzyl fluorides: