RSS-Feed abonnieren

DOI: 10.1055/a-2616-5161
Landscape and Spectrum of VWF Variants in Type 2 Von Willebrand Disease: Insights from a German Patient Cohort
Authors

Abstract
Introduction
von Willebrand disease (VWD) type 2 arises from variants in von Willebrand factor (VWF) that disrupt its essential hemostatic functions. As per ISTH guidelines, it is classified as type 2A, 2B, 2M, and 2N based on the affected VWF roles.
Objectives
This population-based study aims to uncover the genotype and laboratory phenotypes in type 2 VWD, providing insights into underlying genetics and genotype–phenotype associations.
Patients/Methods
Our cohort included 247 patients from 196 families. Patients were characterized through multiple VWF phenotypic assays and genetic analyses, including DNA sequencing, copy number variation evaluations, and bioinformatic assessments.
Results
A total of 86 index patients (IPs, 44%) were diagnosed with type 2A, the most prevalent subtype. Additionally, 27 IPs (14%) were diagnosed with type 2N, 24 IPs (12%) with type 2B, 17 IPs (9%) with type 2M, and 42 IPs categorized as type U VWD carried VWD-associated variants but could not be assigned to a specific subtype. VWF variants were detected in 187 out of 196 (95%) individuals. A total of 222 VWF variants were identified: 187 missense (84%), 22 null alleles (10%), 5 regulatory (2%), 6 gene conversions (3%), and 2 silent variants (1%). Many variants were recurrent in our cohort, resulting in 114 distinct variants. Of these, 45 (39%) were novel.
Conclusion
Our data expands the spectrum of disease-associated variants in VWF, including many newly identified variants. This provides valuable insights for accurate diagnosis and personalized treatment. Additionally, the significant genetic heterogeneity among type 2 patients highlights the challenges in sub-classification.
Keywords
von Willebrand disease - von Willebrand factor - type 2 von Willebrand disease - genetic variationAuthors' Contribution
H.Y. designed the study, interpreted the data, supervised the research, and wrote the paper. S.H. contributed to genetic analysis, phenotypic laboratory analysis, and data acquisition. A.K. analyzed the data and did the bioinformatic analysis. A.P. and B.P. performed genetic analysis, including DNA sequencing and copy number variation analysis, and aided in data interpretation. J.M. and B.P. contributed to phenotypic laboratory analysis. A.B. contributed to the in silico structural analysis. N.M., U.S., H.R., H.T., K.L., M.O., K.T.-G., O.T. and R.K. contributed to data acquisition, phenotypic laboratory analysis, and provided final approval. J.O. assisted in data interpretation and manuscript review.
* These authors contributed equally as co-first authors.
Publikationsverlauf
Eingereicht: 09. Januar 2025
Angenommen: 09. April 2025
Accepted Manuscript online:
20. Mai 2025
Artikel online veröffentlicht:
05. Juni 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Budde U. Diagnosis of von Willebrand disease subtypes: implications for treatment. Haemophilia 2008; 14 (Suppl. 05) 27-38
- 2 Goodeve AC. The genetic basis of von Willebrand disease. Blood Rev 2010; 24 (03) 123-134
- 3 Huizinga EG, Tsuji S, Romijn RAP. et al. Structures of glycoprotein Ibalpha and its complex with von Willebrand factor A1 domain. Science 2002; 297 (5584) 1176-1179
- 4 Ruggeri ZM, Pareti FI, Mannucci PM, Ciavarella N, Zimmerman TS. Heightened interaction between platelets and factor VIII/von Willebrand factor in a new subtype of von Willebrand's disease. N Engl J Med 1980; 302 (19) 1047-1051
- 5 Krishnaswamy S. FVIII-VWF dos-à-dos. Blood 2015; 126 (08) 923-924
- 6 Peyvandi F, Garagiola I, Baronciani L. Role of von Willebrand factor in the haemostasis. Blood Transfus 2011; 9 (Suppl. 02) s3-s8
- 7 Mancuso DJ, Tuley EA, Westfield LA. et al. Structure of the gene for human von Willebrand factor. J Biol Chem 1989; 264 (33) 19514-19527
- 8 Zhou Y-F, Eng ET, Zhu J, Lu C, Walz T, Springer TA. Sequence and structure relationships within von Willebrand factor. Blood 2012; 120 (02) 449-458
- 9 Yadegari H, Biswas A, Ahmed S, Naz A, Oldenburg J. von Willebrand factor propeptide missense variants affect anterograde transport to Golgi resulting in ER retention. Hum Mutat 2021; 42 (06) 731-744
- 10 Shu Z, Zeng J, Xia L, Cai H, Zhou A. Structural mechanism of VWF D'D3 dimer formation. Cell Discov 2022; 8 (01) 14
- 11 Lippok S, Kolšek K, Löf A. et al. von Willebrand factor is dimerized by protein disulfide isomerase. Blood 2016; 127 (09) 1183-1191
- 12 Zeng J, Shu Z, Liang Q. et al. Structural basis of von Willebrand factor multimerization and tubular storage. Blood 2022; 139 (22) 3314-3324
- 13 Brehm MA. Von Willebrand factor processing. Hamostaseologie 2017; 37 (01) 59-72
- 14 Yadegari H, Driesen J, Pavlova A. et al. Insights into pathological mechanisms of missense mutations in C-terminal domains of von Willebrand factor causing qualitative or quantitative von Willebrand disease. Haematologica 2013; 98 (08) 1315-1323
- 15 Foster PA, Fulcher CA, Marti T, Titani K, Zimmerman TS. A major factor VIII binding domain resides within the amino-terminal 272 amino acid residues of von Willebrand factor. J Biol Chem 1987; 262 (18) 8443-8446
- 16 Miyata S, Goto S, Federici AB, Ware J, Ruggeri ZM. Conformational changes in the A1 domain of von Willebrand factor modulating the interaction with platelet glycoprotein Ibalpha. J Biol Chem 1996; 271 (15) 9046-9053
- 17 Pareti FI, Fujimura Y, Dent JA, Holland LZ, Zimmerman TS, Ruggeri ZM. Isolation and characterization of a collagen binding domain in human von Willebrand factor. J Biol Chem 1986; 261 (32) 15310-15315
- 18 Yee A, Gildersleeve RD, Gu S. et al. A von Willebrand factor fragment containing the D'D3 domains is sufficient to stabilize coagulation factor VIII in mice. Blood 2014; 124 (03) 445-452
- 19 Lin J, Ding X, Yang P. et al. Force-induced biphasic regulation of VWF cleavage by ADAMTS13. Thromb Res 2023; 229: 99-106
- 20 Brehm MA, Huck V, Aponte-Santamaría C. et al. von Willebrand disease type 2A phenotypes IIC, IID and IIE: a day in the life of shear-stressed mutant von Willebrand factor. Thromb Haemost 2014; 112 (01) 96-108
- 21 Löf A, Müller JP, Brehm MA. A biophysical view on von Willebrand factor activation. J Cell Physiol 2018; 233 (02) 799-810
- 22 Okhota S, Melnikov I, Avtaeva Y, Kozlov S, Gabbasov Z. Shear stress-induced activation of von Willebrand factor and cardiovascular pathology. Int J Mol Sci 2020; 21 (20) 7804
- 23 König G, Obser T, Marggraf O. et al. Alteration in GPIIb/IIIa binding of VWD-associated von Willebrand factor variants with C-terminal missense mutations. Thromb Haemost 2019; 119 (07) 1102-1111
- 24 Petri A, Kim HJ, Xu Y. et al. Crystal structure and substrate-induced activation of ADAMTS13. Nat Commun 2019; 10 (01) 3781
- 25 Atiq F. The molecular background of quantitative defects of von Willebrand factor. J Thromb Haemost 2024; 22 (11) 3004-3006
- 26 James PD, Connell NT, Ameer B. et al. ASH ISTH NHF WFH 2021 guidelines on the diagnosis of von Willebrand disease. Blood Adv 2021; 5 (01) 280-300
- 27 Yadegari H, Oldenburg J. The current understanding of molecular pathogenesis of quantitative von Willebrand disease, types 1 and 3. Hamostaseologie 2020; 40 (01) 105-118
- 28 Leebeek FWG, Eikenboom JCJ. Von Willebrand's disease. N Engl J Med 2016; 375 (21) 2067-2080
- 29 Atiq F, Blok R, van Kwawegen CB. et al. Type 1 VWD classification revisited: novel insights from combined analysis of the LoVIC and WiN studies. Blood 2024; 143 (14) 1414-1424
- 30 de Jong A, Eikenboom J. Von Willebrand disease mutation spectrum and associated mutation mechanisms. Thromb Res 2017; 159: 65-75
- 31 Seidizadeh O, Eikenboom JCJ, Denis CV. et al. von Willebrand disease. Nat Rev Dis Primers 2024; 10 (01) 51
- 32 Nurden P, Debili N, Vainchenker W. et al. Impaired megakaryocytopoiesis in type 2B von Willebrand disease with severe thrombocytopenia. Blood 2006; 108 (08) 2587-2595
- 33 Maas DPMSM, Atiq F, Blijlevens NMA. et al. Von Willebrand disease type 2M: correlation between genotype and phenotype. J Thromb Haemost 2022; 20 (02) 316-327
- 34 Seidizadeh O, Peyvandi F, Mannucci PM. Von Willebrand disease type 2N: an update. J Thromb Haemost 2021; 19 (04) 909-916
- 35 James P, Leebeek F, Casari C, Lillicrap D. Diagnosis and treatment of von Willebrand disease in 2024 and beyond. Haemophilia 2024; 30 (Suppl. 03) 103-111
- 36 Seidizadeh O, Baronciani L, Lillicrap D, Peyvandi F. Application of genetic testing for the diagnosis of von Willebrand disease. J Thromb Haemost 2024; 22 (08) 2115-2128
- 37 Krahforst A, Yadegari H, Pavlova A. et al. Unravelling the spectrum of von Willebrand factor variants in quantitative von Willebrand disease: results from a German cohort study. J Thromb Haemost 2024; 22 (11) 3010-3034
- 38 Yadegari H, Driesen J, Pavlova A, Biswas A, Hertfelder H-J, Oldenburg J. Mutation distribution in the von Willebrand factor gene related to the different von Willebrand disease (VWD) types in a cohort of VWD patients. Thromb Haemost 2012; 108 (04) 662-671
- 39 Müller J, Miesbach W, Prüller F, Siegemund T, Scholz U, Sachs UJ. Standing Commission Labor (STAEKOLA) of the Society of Thrombosis and Haemostasis Research (GTH). An update on laboratory diagnostics in haemophilia A and B. Hamostaseologie 2022; 42 (04) 248-260
- 40 Yadegari H, Jamil MA, Müller J. et al. Multifaceted pathomolecular mechanism of a VWF large deletion involved in the pathogenesis of severe VWD. Blood Adv 2022; 6 (03) 1038-1053
- 41 Ahmed S, Yadegari H, Naz A. et al. Characterization of the mutation spectrum in a Pakistani cohort of type 3 von Willebrand disease. Haemophilia 2019; 25 (06) 1035-1044
- 42 Yadegari H, Driesen J, Hass M, Budde U, Pavlova A, Oldenburg J. Large deletions identified in patients with von Willebrand disease using multiple ligation-dependent probe amplification. J Thromb Haemost 2011; 9 (05) 1083-1086
- 43
Richards S,
Aziz N,
Bale S.
et al;
ACMG Laboratory Quality Assurance Committee.
Standards and guidelines for the interpretation of sequence variants: a joint consensus
recommendation of the American College of Medical Genetics and Genomics and the Association
for Molecular Pathology. Genet Med 2015; 17 (05) 405-424
Reference Ris Wihthout Link
- 44 Stenson PD, Mort M, Ball EV, Shaw K, Phillips A, Cooper DN. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet 2014; 133 (01) 1-9
- 45 Rehm HL, Berg JS, Brooks LD. et al; ClinGen. ClinGen—the clinical genome resource. N Engl J Med 2015; 372 (23) 2235-2242
- 46 Gyulkhandanyan A, Rezaie AR, Roumenina L. et al. Analysis of protein missense alterations by combining sequence- and structure-based methods. Mol Genet Genomic Med 2020; 8 (04) e1166
- 47 Jang W, Park J, Chae H, Kim M. Comparison of in silico tools for splice-altering variant prediction using established spliceogenic variants: an end-user's point of view. Int J Genomics 2022; 2022: 5265686
- 48 Sim N-L, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 2012; 40 (Web Server issue): W452-7
- 49 McLaren W, Gil L, Hunt SE. et al. The Ensembl Variant Effect Predictor. Genome Biol 2016; 17 (01) 122
- 50 Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF. et al. Predicting splicing from primary sequence with deep learning. Cell 2019; 176 (03) 535-548.e24
- 51 Reese MG, Eeckman FH, Kulp D, Haussler D. Improved splice site detection in Genie. J Comput Biol 1997; 4 (03) 311-323
- 52 Garcia FAO, de Andrade ES, Palmero EI. Insights on variant analysis in silico tools for pathogenicity prediction. Front Genet 2022; 13: 1010327
- 53 Emsley J, Cruz M, Handin R, Liddington R. Crystal structure of the von Willebrand factor A1 domain and implications for the binding of platelet glycoprotein Ib. J Biol Chem 1998; 273 (17) 10396-10401
- 54 Dumas JJ, Kumar R, McDonagh T. et al. Crystal structure of the wild-type von Willebrand factor A1-glycoprotein Ibalpha complex reveals conformation differences with a complex bearing von Willebrand disease mutations. J Biol Chem 2004; 279 (22) 23327-23334
- 55 Brondijk THC, Bihan D, Farndale RW, Huizinga EG. Implications for collagen I chain registry from the structure of the collagen von Willebrand factor A3 domain complex. Proc Natl Acad Sci U S A 2012; 109 (14) 5253-5258
- 56 Zhang Q, Zhou Y-F, Zhang C-Z, Zhang X, Lu C, Springer TA. Structural specializations of A2, a force-sensing domain in the ultralarge vascular protein von Willebrand factor. Proc Natl Acad Sci U S A 2009; 106 (23) 9226-9231
- 57 Dong X, Leksa NC, Chhabra ES. et al. The von Willebrand factor D'D3 assembly and structural principles for factor VIII binding and concatemer biogenesis. Blood 2019; 133 (14) 1523-1533
- 58 Javitt G, Yeshaya N, Khmelnitsky L, Fass D. Assembly of von Willebrand factor tubules with in vivo helical parameters requires A1 domain insertion. Blood 2022; 140 (26) 2835-2843
- 59 Abramson J, Adler J, Dunger J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024; 630 (8016) 493-500
- 60 Xu E-R, von Bülow S, Chen P-C. et al. Structure and dynamics of the platelet integrin-binding C4 domain of von Willebrand factor. Blood 2019; 133 (04) 366-376
- 61 Kutzki F, Butera D, Lay AJ. et al. Disulfide bond reduction and exchange in C4 domain of von Willebrand factor undermines platelet binding. J Thromb Haemost 2023; 21 (08) 2089-2100
- 62 Krieger E, Vriend G. YASARA View—molecular graphics for all devices—from smartphones to workstations. Bioinformatics 2014; 30 (20) 2981-2982
- 63 Jacobi PM, Gill JC, Flood VH, Jakab DA, Friedman KD, Haberichter SL. Intersection of mechanisms of type 2A VWD through defects in VWF multimerization, secretion, ADAMTS-13 susceptibility, and regulated storage. Blood 2012; 119 (19) 4543-4553
- 64 Vangenechten I, Gadisseur A. Improving diagnosis of von Willebrand disease: reference ranges for von Willebrand factor multimer distribution. Res Pract Thromb Haemost 2020; 4 (06) 1024-1034
- 65 Seidizadeh O, Baronciani L, Pagliari MT. et al. Genetic determinants of enhanced von Willebrand factor clearance from plasma. J Thromb Haemost 2023; 21 (05) 1112-1122
- 66 Casari C, Lenting PJ, Wohner N, Christophe OD, Denis CV. Clearance of von Willebrand factor. J Thromb Haemost 2013; 11 (Suppl. 01) 202-211
- 67 Christopherson PA, Tijet N, Haberichter SL. et al; Zimmerman Project Investigators. The common VWF variant p.Y1584C: detailed pathogenic examination of an enigmatic sequence change. J Thromb Haemost 2024; 22 (03) 666-675
- 68 Borràs N, Batlle J, Pérez-Rodríguez A. et al. Molecular and clinical profile of von Willebrand disease in Spain (PCM-EVW-ES): comprehensive genetic analysis by next-generation sequencing of 480 patients. Haematologica 2017; 102 (12) 2005-2014
- 69 Liang Q, Qin H, Ding Q. et al. Molecular and clinical profile of VWD in a large cohort of Chinese population: application of next generation sequencing and CNVplex® technique. Thromb Haemost 2017; 117 (08) 1534-1548
- 70 Flood VH, Christopherson PA, Bellissimo DB. et al. Spectrum of type 2 von Willebrand disease in the Zimmerman program. Blood 2014; 124 (21) 472
- 71 Vangenechten I, Smejkal P, Zavrelova J. et al. Analysis of von Willebrand disease in the “Heart of Europe.”. TH Open 2022; 6 (04) e335-e346
- 72 Favaloro EJ, Pasalic L, Curnow J. Type 2M and type 2A von Willebrand disease: similar but different. Semin Thromb Hemost 2016; 42 (05) 483-497
- 73 Seidizadeh O, Baronciani L, Pagliari MT. et al. Phenotypic and genetic characterizations of the Milan cohort of von Willebrand disease type 2. Blood Adv 2022; 6 (13) 4031-4040
- 74 Veyradier A, Boisseau P, Fressinaud E. et al; French Reference Center for von Willebrand disease. A laboratory phenotype/genotype correlation of 1167 French patients from 670 families with von Willebrand disease: a new epidemiologic picture. Medicine (Baltimore) 2016; 95 (11) e3038
- 75 Lillicrap D. Genotype/phenotype association in von Willebrand disease: is the glass half full or empty?. J Thromb Haemost 2009; 7 (Suppl. 01) 65-70
- 76 Liang Q, Zhang Z, Ding B. et al. A noncanonical splicing variant c.875-5 T > G in von Willebrand factor causes in-frame exon skipping and type 2A von Willebrand disease. Thromb Res 2024; 236: 51-60
- 77 Pagliari MT, Baronciani L, Garcìa Oya I. et al. A synonymous (c.3390C>T) or a splice-site (c.3380-2A>G) mutation causes exon 26 skipping in four patients with von Willebrand disease (2A/IIE). J Thromb Haemost 2013; 11 (07) 1251-1259
- 78 Campioni M, Legendre P, Loubiere C. et al. In vivo modulation of a dominant-negative variant in mouse models of von Willebrand disease type 2A. J Thromb Haemost 2021; 19 (01) 139-146
- 79 James PD, Lillicrap D. The molecular characterization of von Willebrand disease: good in parts. Br J Haematol 2013; 161 (02) 166-176
- 80 Atiq F, Boender J, van Heerde WL. et al. Importance of genotyping in von Willebrand disease to elucidate pathogenic mechanisms and variability in phenotype. HemaSphere 2022; 6 (06) e718
- 81 Favaloro EJ. Genetic testing for von Willebrand disease: the case against. J Thromb Haemost 2010; 8 (01) 6-12
- 82 DiGiandomenico S, Christopherson PA, Haberichter SL, Abshire TC, Montgomery RR, Flood VH. Zimmerman Program Investigators. Laboratory variability in the diagnosis of type 2 VWD variants. J Thromb Haemost 2021; 19 (01) 131-138
- 83 Seidizadeh O, Mollica L, Zambarbieri S. et al. Type 2M/2A von Willebrand disease: a shared phenotype between type 2M and 2A. Blood Adv 2024; 8 (07) 1725-1736
- 84 van Kwawegen CB, Atiq F, Endenburg D. et al; WiN study group. Genetic variants, thrombocytopenia, and clinical phenotype of type 2B von Willebrand disease: a median 16-year follow-up study. J Thromb Haemost 2024; 22 (12) 3460-3472