RSS-Feed abonnieren
DOI: 10.1055/a-2596-9970
Zwitterionic Acridinium Amidate for Photocatalytic Acceptorless Dehydrogenation
This work was financially supported by MEXT KAKENHI Grants JP23H04901 and JP23H04907 (Green Catalysis Science); JSPS KAKENHI Grants 24K01481, 23H00296, and 22K21346; and JST FOREST Grant JPMJFR221L. The Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the IRTG 2678–Functional π-Systems (pi-Sys) (Münster-Nagoya International Research Training Group, GRK 2678-437785492) and grant GA 1594-6/2 are also gratefully acknowledged for generous financial support.

Abstract
The development of catalytic systems that facilitate simple yet valuable molecular transformations in a sustainable manner is of fundamental importance in the field of synthetic organic chemistry. Herein, we report the expedient application of a zwitterionic acridinium amidate, a recently developed direct hydrogen-atom-transfer catalyst, in catalytic acceptorless dehydrogenation (CAD). The combined use of the acridinium amidate with a cobaloxime complex and a protic additive as a catalyst system enables the CAD of hydrocarbons to proceed with high efficiency under mild reaction conditions.
Key word
acceptorless dehydrogenation - photocatalysis - zwitterions - hybrid catalysis - dehydrogenation - aromatizationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2596-9970.
- Supporting Information
Publikationsverlauf
Eingereicht: 11. März 2025
Angenommen nach Revision: 29. April 2025
Accepted Manuscript online:
29. April 2025
Artikel online veröffentlicht:
10. Juni 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 Dobereiner GE, Crabtree RH. Chem. Rev. 2010; 110: 681
- 2 Armaroli N, Balzani V. ChemSusChem 2011; 4: 21
- 3 Gunanathan C, Milstein D. Science 2013; 341: 1229712
- 4 Verma PK. Coord. Chem. Rev. 2022; 472: 214805
- 5 Zhou M.-J, Liu G, Xu C, Huang Z. Synthesis 2022; 55: 547
- 6 Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2017: 2056
- 7 Capaldo L, Ravelli D, Fagnoni M. Chem. Rev. 2022; 122: 1875
- 8 Dam P, Zuo K, Azofra LM, El-Sepelgy O. Angew. Chem. Int. Ed. 2024; 63: e202405775
- 9 West JG, Huang D, Sorensen EJ. Nat. Commun. 2015; 6: 10093
- 10 Zhou M.-J, Zhang L, Liu G, Xu C, Huang Z. J. Am. Chem. Soc. 2021; 143: 16470
- 11 Kato S, Saga Y, Kojima M, Fuse H, Matsunaga S, Fukatsu A, Kondo M, Masaoka S, Kanai M. J. Am. Chem. Soc. 2017; 139: 2204
- 12 Fuse H, Kojima M, Mitsunuma H, Kanai M. Org. Lett. 2018; 20: 2042
- 13 Ritu Ritu, Das S, Tian Y.-M, Karl T, Jain N, König B. ACS Catal. 2022; 12: 10326
- 14 Zuo K, Zhu J, Akhtar F, Dam P, Azofra LM, El-Sepelgy O. Org. Lett. 2025; 27: 30
- 15 Yi P, Wu Y, Wang J, Liu Q, Xing Y, Lu Y, Ma C, Duan L, Zhao J, Meng Q. Org. Biomol. Chem. 2025; 23: 1574
- 16 Yuan Y, Zhang Y, Menzel JP, Santoro J, Dolack M, Wang H, Batista V, Wang D. ACS Catal. 2024; 14: 17445
- 17 Gu X, Zhang Y.-A, Zhang S, Wang L, Ye X, Occhialini G, Barbour J, Pentelute BL, Wendlandt AE. Nature 2024; 634: 352
- 18 Ritu Ritu, Kolb D, Jain N, König B. Adv. Synth. Catal. 2023; 365: 605
- 19 Entgelmeier L.-M, Mori S, Sendo S, Yamaguchi R, Suzuki R, Yanai T, García Mancheño O, Ohmatsu K, Ooi T. Angew. Chem. Int. Ed. 2024; 63: e202404890
- 20 Stéphan E, Zen R, Authier L, Jaouen G. Steroids 1995; 60: 809
- 21 Kürti L, Czakó B, Corey EJ. Org. Lett. 2008; 10: 5247
- 22 Yue T, Li H.-P, Ding K. Tetrahedron Lett. 2016; 57: 4850
- 23 Alsayari A, Kopel L, Ahmed MS, Pay A, Carlson T, Halaweish FT. Steroids 2017; 118: 32
- 24
Acceptorless Dehydrogenation of 1,2,3,4-Tetrahydronaphthalene; Typical Procedure
A flame-dried Schlenk tube equipped with a stirrer bar was charged with acridinium
amidate 1 (1.6 mg, 0.003 mmol, 3 mol %), Co complex 2a (2.1 mg, 0.005 mmol, 5 mol %), and 2,4,6-collidinium tosylate (14.7 mg, 0.05 mmol).
The tube was sealed with a rubber septum, evacuated, and backfilled with Ar five times,
then DCE (500 μL) and 1,2,3,4-tetrahydronaphthalene (13.2 mg, 0.1 mmol, 1.0 equiv)
were successively introduced into the Schlenk tube. The rubber septum was replaced
with a glass stopper under a steady flow of Ar, and the tube was quickly evacuated
and backfilled with Ar five times. The mixture was then stirred for 48 h under irradiation
by two Kessil H150 Blue lamps, with fan cooling to maintain the temperature below
40 °C. The mixture was concentrated, and the yield of naphthalene was determined by
GC-FID with 1,3,5-trimethoxybenzene as an internal standard [yield: 0.080 mmol (80%)].