RSS-Feed abonnieren
DOI: 10.1055/a-2593-4458
Chitosan-Promoted Reduction of Nitroaromatics by B2(NMe2)4 under Wet Ball Milling Conditions
We are grateful to National Natural Science Foundation of China (No. 51503037), Natural Science Foundation of Fujian Province (No. 2024J01968), and the Project of Fujian Provincial Science and Technology Department (No. 2024H6018, No.2024Y0030) for financial support.

Abstract
The environmentally friendly reduction of nitro compounds to their corresponding amino compounds has been a practical and challenging task. In this paper, a method has been developed for the reduction of nitroaromatics to aromatic amines by ball milling. The method uses cheap and available tetrakis(dimethylamino)diboron as the reducing agent and NaOH as the base, and the reduction reaction can be achieved by wet ball milling assisted by chitosan. A range of nitroaromatic compounds containing a variety of alkyl, halogen, polynitro, and other groups were chemoselectively reduced to the corresponding anilines in good yields. This protocol will enrich functional group transformations of nitroaromatics to amines.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2593-4458.
- Supporting Information
Publikationsverlauf
Eingereicht: 07. Februar 2025
Angenommen nach Revision: 23. April 2025
Accepted Manuscript online:
23. April 2025
Artikel online veröffentlicht:
12. Mai 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Birch AM, Groombridge S, Law R, Leach AG, Mee CD, Schramm C. J. Med. Chem. 2012; 55: 3923
- 1b Tafesh AM, Weiguny J. Chem. Rev. 1996; 96: 2035
- 2a Epa K, Aakeroy CB, Desper J, Rayat S, Chandra KL, Cruz-Cabeza AJ. Chem. Commun. 2013; 49: 7929
- 2b Jeanty M, Blu J, Suzenet F, Guillaumet G. Org. Lett. 2009; 11: 5142
- 3a Kadam HK, Tilve SG. RSC Adv. 2015; 5: 83391
- 3b Westerhaus FA, Jagadeesh RV, Wienhöfer G, Pohl MM, Radnik J, Surkus AE, Rabeah J, Junge K, Junge H, Nielsen M, Brückner A, Beller M. Nat. Chem. 2013; 5: 537
- 3c Jagadeesh RV, Surkus AE, Junge H, Pohl MM, Radnik J, Rabeah J, Huan H, Schünemann V, Brückner A, Beller M. Science 2013; 342: 1073
- 5 Coellen M, Rüchardt C. Chem. Eur. J. 1995; 1: 564
- 6 Orlandi M, Tosi F, Bonsignore M, Benaglia M. Org. Lett. 2015; 17: 3941
- 7 Li B, Xu Z. J. Am. Chem. Soc. 2009; 131: 16380
- 8 Gao Y, Ma D, Wang C, Guan J, Bao X. Chem. Commun. 2011; 47: 2432
- 9a Yang K, Zhou F, Kuang Z, Gao G, Driver TG, Song Q. Org. Lett. 2016; 18: 4088
- 9b Zhou Y, Zhou H, Liu S, Pi D, Shen G. Tetrahedron 2017; 73: 3898
- 9c Pi D, Zhou H, Zhou Y, Liu Q, He R, Shen G, Uozumi Y. Tetrahedron 2018; 74: 2121
- 9d Chen X, Wang H, Du S, Driess M, Mo Z. Angew. Chem. Int. Ed. 2022; 61: e202114598
- 9e Gudun KA, Zakarina R, Segizbayev M, Hayrapetyan D, Slamova A, Khalimon AY. Adv. Synth. Catal. 2022; 364: 601
- 10a Lu H, Geng Z, Li J, Zou D, Wu Y, Wu Y. Org. Lett. 2016; 18: 2774
- 10b Wang W, Liu Z, Liu M, Ai Y, Fu Z, Qin C. Tetrahedron 2024; 162: 134130
- 11 Chen D, Zhou Y, Zhou H, Liu S, Liu Q, Zhang K, Uozumi Y. Synlett 2018; 29: 1765
- 12 Du H.-C, Simmons N, Faver JC, Yu Z, Palaniappan M, Riehle K, Matzuk MM. Org. Lett. 2019; 21: 2194
- 13 Hosoya H, Misal Castro LC, Sultan I, Nakajima Y, Ohmura T, Sato K, Tsurugi H, Suginome M, Mashima K. Org. Lett. 2019; 21: 9812
- 14 Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
- 15a Takacs L. Chem. Soc. Rev. 2013; 42: 7649
- 15b James SL, Adams CJ, Bolm C, Braga D, Collier P, Friščić T, Grepioni F, Harris KD. M, Hyett G, Jones V, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steed JW, Waddell DC. Chem. Soc. Rev. 2012; 41: 413
- 15c Achar TK, Bose A, Mal P. Beilstein J. Org. Chem. 2017; 13: 1907
- 15d Do J.-L, Friščić T. ACS Cent. Sci. 2017; 3: 13
- 15e Hernández JG.. Bolm C. J. Org. Chem. 2017; 82: 4007
- 15f Howard JL, Cao Q, Browne DL. Chem. Sci. 2018; 9: 3080
- 15g Bolm C, Hernández JG. Angew. Chem. Int. Ed. 2019; 58: 3285
- 15h Friščić T, Mottillo C, Titi HM. Angew. Chem. Int. Ed. 2020; 59: 1018
- 15i Egorov IN, Santra S, Kopchuk DS, Kovalev IS, Zyryanov GV, Majee A, Ranu BC, Rusinov VL, Chupakhin ON. Green Chem. 2020; 22: 302
- 16a Rightmire NR, Hanusa TP. Dalton Trans. 2016; 45: 2352
- 16b Hernández JG. Chem. Eur. J. 2017; 23: 17157
- 16c Patel C, André-Joyaux E, Leitch JA, de Irujo-Labalde XM, Ibba F, Struijs J, Ellwanger MA, Paton R, Browne DL, Pupo G, Aldridge S, Hayward MA, Gouverneur V. Science 2023; 381: 302
- 17a Štrukil V. Synlett 2018; 29: 1281
- 17b Waghmare DS, Tambe SD, Kshirsagar UA. Asian J. Org. Chem. 2020; 9: 2095
- 18a Portada T, Margetić D, Štrukil V. Molecules 2018; 23: 3163
- 18b Schumacher C, Crawford DE, Raguž B, Glaum R, James SL, Bolm C, Hernández JG. Chem. Commun. 2018; 54: 8355
- 18c Basoccu F, Cuccu F, Caboni P, De Luca L, Porcheddu A. Molecules 2023; 28: 2239
- 19 McCloskey AL, Brotherton RJ, Boone JL. J. Am. Chem. Soc. 1961; 83: 4750