Subscribe to RSS
DOI: 10.1055/a-2572-0695
Ligand-Enabled Cu-Catalyzed Stereoselective Synthesis of P-Stereogenic ProTides
Financial support for this work was provided by the National Natural Science Foundation of China (22101171), the Xiangfu Lab Research Project (XF012023B0100), the ‘Thousand Youth Talents Plan’, the Fundamental Research Funds for the Central Universities (23X010301599), and startup funding from Shanghai Jiao Tong University (SJTU). We also thank the Shanghai Institute of Rehabilitation with Integrated Western and Chinese Traditional Medicine (2023XKPT26-RC1) and the Shanghai Xuhui District Central Hospital Regional Cooperation Project (23XHYD-18) for financial support.

Abstract
We present a copper-catalyzed, stereoselective phosphorylation of nucleosides with phosphoryl(V) chlorides, providing an efficient and straightforward approach to the synthesis of a series of nucleoside analogues that demonstrate significant promise in the treatment of viral infections and cancers. The stereochemical configurations at the phosphorus center in ProTides are known to have a profound impact on their pharmacological properties. However, the asymmetric construction of P–O bonds remains a major challenge in the synthesis of nucleoside-based therapeutics. In this study, we introduce a base-promoted nucleophilic substitution pathway that facilitates the highly stereoselective synthesis of previously inaccessible (S,R P) and (R,S P)-ProTide derivatives, offering a powerful strategy for the diversification of nucleoside drug candidates.
Publication History
Received: 20 February 2025
Accepted after revision: 01 April 2025
Accepted Manuscript online:
01 April 2025
Article published online:
13 May 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Jordheim LP, Durantel D, Zoulim F, Dumontet C. Nat. Rev. Drug Discovery 2013; 12: 447
- 1b Thornton PJ, Kadri H, Miccoli A, Mehellou Y. J. Med. Chem. 2016; 59: 10400
- 2a McGuigan C, Derudas M, Gonczy B, Hinsinger K, Kandil S, Pertusati F, Serpi M, Snoeck S, Andrei G, Balzarini J, McHugh TD, Maitra A, Akorli E, Evangelopoulos D, Bhakta S. Bioorg. Med. Chem. 2014; 22: 2816
- 2b McGuigan C, Perry A, Yarnold CJ, Sutton PW, Lowe D, Miller W, Rahim SG, Slater MJ. Antiviral Chem. Chemother. 1998; 9: 233
- 2c McGuigan C, Murziani P, Slusarczyk M, Gonczy B, Voorde JV, Liekens S, Balzarini J. J. Med. Chem. 2011; 54: 7247
- 2d Hecker SJ, Erion MD. J. Med. Chem. 2008; 51: 2328
- 3a McGuigan C, Pathirana RN, Mahmood N, Hay AJ. Bioorg. Med. Chem. Lett. 1992; 2: 701
- 3b McGuigan C, Pathirana RN, Balzarini J, Clercq ED. J. Med. Chem. 1993; 36: 1048
- 4a Serpi M, Pertusati F. Expert Opin. Drug Discovery 2021; 16: 1149
- 4b Serpi M, Ferrari V, McGuigan C, Ghazaly E, Pepper C. J. Med. Chem. 2022; 65: 15789
- 4c Chapman H, Kernan M, Prisbe E, Rohloff J, Sparacino M, Terhorst T, Yu R. Nucleosides, Nucleotides Nucleic Acids 2001; 20: 621
- 4d Eisenberg EJ, He GX, Lee WA. Nucleosides, Nucleotides Nucleic Acids 2001; 20: 1091
- 5a Mehellou Y, Hardeep S, Rattan HS, Balzarini J. J. Med. Chem. 2018; 61: 2211
- 5b Kirby SA, Dowd CS. Med. Chem. Res. 2022; 31: 207
- 6 Sofia MJ, Bao D, Chang W, Du J, Nagarathnam D, Rachakonda S, Reddy PG, Ross BS, Wang P. J. Med. Chem. 2010; 53: 7202
- 7a Kolodiazhnyi OI, Kolodiazhna A. Tetrahedron: Asymmetry 2017; 28: 1651
- 7b Yao Q, Wang A, Pu J, Tang Y. Chin. J. Org. Chem. 2014; 34: 292
- 7c Xu Q, Zhao C.-Q, Han L.-B. J. Am. Chem. Soc. 2008; 130: 12648
- 7d Pertusati F, McGuigan C. Chem. Commun. 2015; 51: 8070
- 8a Roman CA, Balzarini J, Meier C. J. Med. Chem. 2010; 53: 7675
- 8b Román CA, Wasserthal P, Balzarini J, Meier C. Eur. J. Org. Chem. 2011; 4899
- 8c Pradere U, Garnier-Amblard EC, Coats SJ, Amblard F, Schinazi RF. Chem. Rev. 2014; 114: 9154
- 8d Ross BS, Ganapati Reddy P, Zhang HR, Rachakonda S, Sofia MJ. J. Org. Chem. 2011; 76: 8311
- 8e Liu Z, Klapars A, Simmons B, Bellomo A, Kalinin A, Weisel M, Hill J, Silverman SM. Org. Process Res. Dev. 2021; 25: 661
- 9a Liu S, Zhang Z, Xie F, Butt NA, Sun L, Zhang W. Tetrahedron: Asymmetry 2012; 23: 329
- 9b DiRocco DA, Ji Y, Sherer EC, Klapars A, Reibarkh M, Dropinski J, Mathew R, Maligres P, Hyde AM, Limanto J, Brunskill A, Ruck RT, Campeau L.-C, Davies IW. Science 2017; 356: 426
- 10 Wang M, Zhang L, Huo X, Zhang Z, Yuan Q, Li P, Chen J, Zou Y, Wu Z, Zhang W. Angew. Chem. Int. Ed. 2020; 59: 20814
- 11a Dong S, Cao W, Pu M, Liu X, Feng X. CCS Chem. 2023; 5: 2717
- 11b Sun S.-Z, Shang M, Xu H, Cheng T.-J, Li M.-H, Dai H.-X. Chem. Commun. 2020; 56: 1444
- 11c Yao Q.-J, Chen J.-H, Song H, Huang F.-R, Shi B.-F. Angew. Chem. Int. Ed. 2022; 61: e202202892
- 11d Chen J.-H, Teng M.-Y, Huang F.-R, Song H, Wang Z.-K, Zhuang H.-L, Wu Y.-J, Wu X, Yao Q.-J, Shi B.-F. Angew. Chem. Int. Ed. 2022; 61: e202210106
- 11e Li Y.-B, Tian H, Zhang S, Xiao J.-Z, Yin L. Angew. Chem. Int. Ed. 2022; 61: e202117760
- 12a Liu X.-T, Zhang Y.-Q, Han X.-Y, Sun S.-P, Zhang Q.-W. J. Am. Chem. Soc. 2019; 141: 16584
- 12b Wang W.-H, Wu Y, Wang H.-T, Qi P.-J, Lan W.-N, Zhang Q.-W. Nat. Synth. 2022; 1: 738
- 12c Zhang Y.-Q, Han X.-Y, Wu Y, Qi P.-J, Zhang Q, Zhang Q.-W. Chem. Sci. 2022; 13: 4095
- 12d Yue W.-J, Xiao J.-Z, Zhang S, Yin L. Angew. Chem. Int. Ed. 2020; 59: 7057
- 12e Zhang S, Xiao J.-Z, Li Y.-B, Shi C.-Y, Yin L. J. Am. Chem. Soc. 2021; 143: 9912
- 12f Yang Z, Gu X, Han L.-B, Wang J. Chem. Sci. 2020; 11: 7451
- 12g Huang Y, Pullarkat SA, Li Y, Leung P.-K. Inorg. Chem. 2012; 51: 2533
- 12h Li Y.-B, Tian H, Yin L. J. Am. Chem. Soc. 2020; 142: 20098
- 12i Zhang S, Jiang N, Xiao J.-Z, Lin G.-Q, Yin L. Angew. Chem. Int. Ed. 2023; 62: e202218798
- 12j Daniels BS, Hou X, Corio SA, Weissman LM, Dong VM, Hirschi JS, Nie S. Angew. Chem. Int. Ed. 2023; 62: e202306511
- 12k Lin X, An K, Zhuo Q, Nishiura M, Cong X, Hou Z. Angew. Chem. Int. Ed. 2023; 62: e202308488
- 13a Jones S, Selitsianos D. Org. Lett. 2002; 4: 3671
- 13b Gustafson RL, Chaberek S, Martell AE. J. Am. Chem. Soc. 1963; 85: 598
- 13c Morrow JR, Trogler WC. Inorg. Chem. 1989; 28: 2330
- 14a Van Wazer JR. J. Am. Chem. Soc. 1956; 78: 5709
- 14b Demmer CS, Krogsgaard-Larsen N, Bunch L. Chem. Rev. 2011; 111: 7981
- 14c Oka N, Wada T. Chem. Soc. Rev. 2011; 40: 5829
- 14d Quasdorf KW, Overman LE. Nature 2014; 516: 181
- 15a Kundu J, Ghosh A, Ghosh U, Das A, Nagar D, Pattanayak S, Ghose A, Sinha S. J. Org. Chem. 2022; 87: 9466
- 15b Brad Wan W, Seth PP. J. Med. Chem. 2016; 59: 9645
- 15c Shi Y, Zhen X, Zhang Y, Li Y, Koo S, Saiding Q, Kong N, Liu G, Chen W, Tao W. Chem. Rev. 2024; 124: 929
- 16 Schwenzer H, Zan ED, Elshani M, Stiphout R, Kudsy M, Morris J, Ferrari V, Um IH, Chettle J, Kazmi F, Campo L, Easton A, Blagden SP. Clin. Cancer Res. 2021; 27: 6500
- 17 Venkatachalam TK, Samuel P, Qazi S, Uckun FM. Bioorg. Med. Chem. 2005; 13: 5408