Subscribe to RSS
DOI: 10.1055/a-2504-3457
Iron-Photocatalyzed Decarboxylative Oxygenation of Aliphatic Carboxylic Acids
L.M.D. was supported by the Jürgen Manchot Foundation. A.B. thanks TRA Matter for an Innovation Grant.

Abstract
Carboxylic acids, a bench-stable, readily available, and structurally diverse class of compounds, represent ideal starting materials for organic synthesis. In this article, we highlight an iron-catalyzed, decarboxylative, C(sp3)–O bond-forming reaction that takes place under mild, photocatalytic, base-free conditions using 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) derivatives as oxygenation reagents. The reaction is enabled by the ability of iron complexes to generate carbon-centered radicals directly from carboxylic acids through a sequence involving a photoinduced carboxylate-to-iron charge transfer, homolysis, and loss of carbon dioxide. The developed transformation displays exquisite substrate tolerance and was applied to various bioactive molecules. We performed an extensive mechanistic investigation through kinetic studies; electrochemistry, EPR, UV/Vis, and HRMS analyses; and DFT calculations. Those studies suggest that TEMPO plays three different roles in the reaction: it acts as an oxygenation reagent, serves as an oxidant to regenerate the Fe catalyst, and functions as an internal base for carboxylic acid deprotonation. The resulting TEMPO adducts are versatile synthons that can be subsequently utilized in C–C and C–heteroatom bond-forming reactions employing commercially available organophotocatalysts and nucleophilic reagents.
1 Introduction
2 Background on the LMCT Reactivity of Iron Complexes
3 Direct Iron-Photocatalyzed Decarboxylative Oxygenation: Reaction Concept
4 Substrate Scope Assessment of Decarboxylative Oxygenation
5 Mechanistic Considerations
6 Conclusion
Key words
decarboxylation - oxygenation - photocatalysis - carboxylic acids - iron catalysis - TEMPOPublication History
Received: 14 October 2024
Accepted after revision: 17 December 2024
Accepted Manuscript online:
17 December 2024
Article published online:
27 January 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Varenikov A, Shapiro E, Gandelman M. Chem. Rev. 2021; 121: 412
- 2 Rodríguez N, Goossen LJ. Chem. Soc. Rev. 2011; 40: 5030
- 3 Patra T, Maiti D. Chem. Eur. J. 2017; 23: 7382
- 4 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 5 Bhadra S, Dzik WI, Goossen LJ. J. Am. Chem. Soc. 2012; 134: 9938
- 6 Costas M, Mehn MP, Jensen MP, Que L. Chem. Rev. 2004; 104: 939
- 7 Li T, Huo L, Pulley C, Liu A. Bioorg. Chem. 2012; 43: 2
- 8 Haldar P, Ray JK. Tetrahedron Lett. 2008; 49: 3659
- 9 Kiyokawa K, Yahata S, Kojima T, Minakata S. Org. Lett. 2014; 16: 4646
- 10 Martínez ÁM, Hayrapetyan D, van Lingen T, Dyga M, Gooßen LJ. Nat. Commun. 2020; 11: 4407
- 11 Schulz G, Kirschning A. Org. Biomol. Chem. 2021; 19: 273
- 12 Xu Y, Huang P, Jiang Y, Lv C, Li P, Wang J, Sun B, Jin C. Green Chem. 2023; 25: 8741
- 13 Mosher WA, Kehr CL. J. Am. Chem. Soc. 1953; 75: 3172
- 14 Corey EJ, Casanova JJr. J. Am. Chem. Soc. 1963; 85: 165
- 15 Yu Q, Zhou D, Liu Y, Huang X, Song C, Ma J, Li J. Org. Lett. 2023; 25: 47
- 16 Denkler LM, Shekar MA, Ngan TS. J, Wylie L, Abdullin D, Engeser M, Schnakenburg G, Hett T, Pilz FH, Kirchner B, Schiemann O, Kielb P, Bunescu A. Angew. Chem. Int. Ed. 2024; 63: e202403292
- 17 Innocent M, Tanguy C, Gavelle S, Aubineau T, Guérinot A. Chem. Eur. J. 2024; 30: e202401252
- 18 Gavelle S, Innocent M, Aubineau T, Guérinot A. Adv. Synth. Catal. 2022; 364: 4189
- 19 Tu J.-L, Gao H, Luo M, Zhao L, Yang C, Guo L, Xia W. Green Chem. 2022; 24: 5553
- 20 Faraggi TM, Li W, MacMillan DW. C. Isr. J. Chem. 2020; 60: 410
- 21 Shirase S, Tamaki S, Shinohara K, Hirosawa K, Tsurugi H, Satoh T, Mashima K. J. Am. Chem. Soc. 2020; 142: 5668
- 22 Reichle A, Sterzel H, Kreitmeier P, Fayad R, Castellano FN, Rehbein J, Reiser O. Chem. Commun. 2022; 58: 4456
- 23 Guan R, Bennett EL, Huang Z, Xiao J. Green Chem. 2022; 24: 2946
- 24 Innocent M, Lalande G, Cam F, Aubineau T, Guérinot A. Eur. J. Org. Chem. 2023; e202300892
- 25 Li R, Dong Y, Khan SN, Zaman MK, Zhou J, Miao P, Hu L, Sun Z. Nat. Commun. 2022; 13: 7061
- 26 Sakakibara Y, Cooper P, Murakami K, Itami K. Chem. Asian J. 2018; 13: 2410
- 27 Zheng C, Wang Y, Xu Y, Chen Z, Chen G, Liang SH. Org. Lett. 2018; 20: 4824
- 28 Mao R, Balon J, Hu X. Angew. Chem. Int. Ed. 2018; 57: 13624
- 29 Shibutani S, Kodo T, Takeda M, Nagao K, Tokunaga N, Sasaki Y, Ohmiya H. J. Am. Chem. Soc. 2020; 142: 1211
- 30 Arias-Rotondo DM, McCusker JK. Chem. Soc. Rev. 2016; 45: 5803
- 31 Wenger OS. J. Am. Chem. Soc. 2018; 140: 13522
- 32 Lunic D, Bergamaschi E, Teskey CJ. Angew. Chem. Int. Ed. 2021; 60: 20594
- 33 Zhu WF, Empel C, Pelliccia S, Koenigs RM, Proschak E, Hernandez-Olmos V. J. Med. Chem. 2024; 67: 4322
- 34 Ziegler M, von Zelewsky A. Coord. Chem. Rev. 1998; 177: 257
- 35 Dutta S, Erchinger JE, Strieth-Kalthoff F, Kleinmans R, Glorius F. Chem. Soc. Rev. 2024; 53: 1068
- 36 Crisenza GE. M, Melchiorre P. Nat. Commun. 2020; 11: 803
- 37 Abderrazak Y, Bhattacharyya A, Reiser O. Angew. Chem. Int. Ed. 2021; 60: 21100
- 38 Marzo L, Pagire SK, Reiser O. König B. 2018; 57: 10034
- 39 McCusker JK. Science 2019; 363: 484
- 40 Förster C, Heinze K. Chem. Soc. Rev. 2020; 49: 1057
- 41 Hockin BM, Li C, Robertson N, Zysman-Colman E. Catal. Sci. Technol. 2019; 9: 889
- 42 Sinha N, Wenger OS. J. Am. Chem. Soc. 2023; 145: 4903
- 43 Juliá F. ChemCatChem 2022; 14: e202200916
- 44 May AM, Dempsey JL. Chem. Sci. 2024; 15: 6661
- 45 Nam W, Lee Y.-M, Fukuzumi S. Bull. Korean Chem. Soc. 2024; 45: 503
- 46 de Groot LH. M, Ilic A, Schwarz J, Wärnmark K. J. Am. Chem. Soc. 2023; 145: 9369
- 47 Woodhouse MD, McCusker JK. J. Am. Chem. Soc. 2020; 142: 16229
- 48 Wenger OS. Chem. Eur. J. 2019; 25: 6043
- 49 Dierks P, Vukadinovic Y, Bauer M. Inorg. Chem. Front. 2022; 9: 206
- 50 Kasha M. Discuss. Faraday Soc. 1950; 9: 14
- 51 Chen J, Browne WR. Coord. Chem. Rev. 2018; 374: 15
- 52 Šima J, Makáňová J. Coord. Chem. Rev. 1997; 160: 161
- 53 Chábera P, Lindh L, Rosemann NW, Prakash O, Uhlig J, Yartsev A, Wärnmark K, Sundström V, Persson P. Coord. Chem. Rev. 2021; 426: 213517
- 54 Beil SB, Chen TQ, Intermaggio NE, MacMillan DW. C. Acc. Chem. Res. 2022; 55: 3481
- 55 Chen H, Liu YA, Liao X. Synthesis 2021; 53: 1
- 56 Mondal S, Mandal S, Mondal S, Midya SP, Ghosh P. Chem. Commun 2024; 60: 9645
- 57 Lu Y.-C, West JG. Angew. Chem. Int. Ed. 2022; 62: e202213055
- 58 Lutovsky GA, Gockel SN, Bundesmann MW, Bagley SW, Yoon TP. Chem 2023; 9: 1610
- 59 Bian K.-J, Lu Y.-C, Nemoto DJr, Kao S.-C, Chen X, West JG. Nat. Chem. 2023; 15: 1683
- 60 Li Z, Wang X, Xia S, Jin J. Org. Lett. 2019; 21: 4259
- 61 Niu K, Zhou P, Ding L, Hao Y, Liu Y, Song H, Wang Q. ACS Sustainable Chem. Eng. 2021; 9: 16820
- 62 Qian J, Zhang Y, Zhao W, Hu P. Chem. Commun. 2024; 60: 2764
- 63 Kao S.-C, Bian K.-J, Chen X.-W, Chen Y, Martí AA, West JG. Chem Catal. 2023; 3: 100603
- 64 Zhang Y, Qian J, Wang M, Huang Y, Hu P. Org. Lett. 2022; 24: 5972
- 65 Fernández-García S, Chantzakou VO, Juliá-Hernández F. Angew. Chem. Int. Ed. 2024; 63: e202311984
- 66 Qi X.-K, Yao L.-J, Zheng M.-J, Zhao L, Yang C, Guo L, Xia W. ACS Catal 2024; 14: 1300
- 67 Xiong N, Li Y, Zeng R. ACS Catal. 2023; 13: 1678
- 68 Feng G, Wang X, Jin J. Eur. J. Org. Chem. 2019; 6728
- 69 Dong Y, Xiong N, Rong Z, Zeng R. Org. Lett. 2024; 26: 2381
- 70 Vogler T, Studer A. Synthesis 2008; 1979
- 71 Nutting JE, Rafiee M, Stahl SS. Chem. Rev. 2018; 118: 4834
- 72 Leifert D, Studer A. Chem. Rev. 2023; 123: 10302
- 73 Nicewicz DA, Nguyen TM. ACS Catal 2014; 4: 355
- 74 Shang T.-Y, Lu L.-H, Cao Z, Liu Y, He W.-M, Yu B. Chem. Commun. 2019; 55: 5408
- 75 Zhu Q, Gentry EC, Knowles RR. Angew. Chem. Int. Ed. 2016; 55: 9969
- 76 Norcott PL, Hammill CL, Noble BB, Robertson JC, Olding A, Bissember AC, Coote ML. J. Am. Chem. Soc. 2019; 141: 15450
- 77 Noble BB, Norcott PL, Hammill CL, Ciampi S, Coote ML. J. Phys. Chem. C 2019; 123: 10300
- 78 Rogers FJ. M, Noble BB, Coote ML. J. Phys. Chem. A 2020; 124: 6104
- 79 Luo Y.-R. Comprehensive Handbook of Chemical Bond Energies. CRC Press; Boca Raton: 2007