RSS-Feed abonnieren
DOI: 10.1055/a-2500-6651
Visible-Light-Induced Acridinium-Catalyzed Acylation of Isoquinolines with Aldehydes via HAT

Abstract
A novel synthetic method utilizes visible light to promote acridinium-catalyzed acylation of substituted isoquinoline via aldehydes in an air atmosphere at room temperature is reported. This method involves the formation of C–C bonds to synthesize the desired product with an excellent yield. This organophotoredox-catalyzed, transition-metal-free synthetic process provides the target compounds in an immensely sustainable manner despite tolerating a broad range of functional groups.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2500-6651.
- Supporting Information
Publikationsverlauf
Eingereicht: 21. September 2024
Angenommen nach Revision: 11. Dezember 2024
Accepted Manuscript online:
11. Dezember 2024
Artikel online veröffentlicht:
24. Januar 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 Dobereiner GE, Crabtree RH. Chem. Rev. 2010; 110: 681
- 2 Ackermann L. Chem. Rev. 2011; 111: 1315
- 3 WencelDelord J, Droge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
- 4 Sun CL, Li BJ, Shi ZJ. Chem. Rev. 2011; 111: 1293
- 5 Shi Z, Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3381
- 6 Mousseau JJ, Charette AB. Acc. Chem. Res. 2013; 46: 412
- 7 Sun CL, Shi ZJ. Chem. Rev. 2014; 114: 9219
- 8 Bering L, Antonchick AP. Org. Lett. 2015; 17: 3134
- 9 Ueda M, Nishimura K, Kashima R, Ryu I. Synlett 2012; 23: 1085
- 10 Xiao T, Li L, Lin G, Mao ZW, Zhou L. Org. Lett. 2014; 16: 4232
- 11a Duncton MA. J. Med. Chem. Commun. 2011; 2: 1135
- 11b Chen Y.-F, Zhu X.-J, Liu Z.-X, Lu Q, Xie N, Ling J. Med. Chem. 2001; 44: 4001
- 11c Al-Khalil S, Schiff PL. J. Nat. Prod. 1985; 48: 989
- 11d Baser KH. C. J. Nat. Prod. 1982; 45: 704
- 12a Gamal AE.-H, Keith S, Amany SH. Curr. Org. Chem. 2015; 19: 585
- 12b Pearson DE, Buehler CA. Synthesis 1972; 533
- 12c Gore PH. Chem. Rev. 1955; 55: 229
- 12d Calloway NO. Chem. Rev. 1935; 17: 327
- 13a Taylor JE, Jones MD, Williams JM. J, Bull SD. Org. Lett. 2010; 12: 5740
- 13b Jaric M, Haag BA, Unsinn A, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2010; 49: 5451
- 13c Krasovskiy A, Krasovskaya V, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 2958
- 13d Hlasta DJ. Tetrahedron Lett. 1990; 31: 5833
- 13e Yamamoto Y, Yanagi A. Chem. Pharm. Bull. 1982; 30: 2003
- 14a Yanagi WR, Storey JM. D. Chem. Soc. Rev. 2007; 36: 1803
- 14b Bolton R, Williams GH. Chem. Soc. Rev. 1986; 15: 261
- 14c Augood DR, Hey DH, Nechvatal A, Williams GH. Nature 1951; 167: 725
- 15a Huang C.-Y, Li J, Liu W, Li C.-J. Chem. Sci. 2019; 10: 5018
- 15b Liu P, Liu W, Li C.-J. J. Am. Chem. Soc. 2017; 139: 14315
- 15c Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
- 15d Li L, Mu X, Liu W, Wang Y, Mi Z, Li C.-J. J. Am. Chem. Soc. 2016; 138: 5809
- 16a Bermejo A, Andreu I, Suvire F, Leonce S, Caignard DH, Renard P, Pierre A, Enriz RD, Cortes D, Cabedo N. J. Med. Chem. 2002; 45: 5058
- 16b Somdej K, Kwanjai K, Ratsami L. J. Nat. Prod. 2007; 70: 1536
- 16c Bringmann G, Zhang G, Büttner T, Bauckmann G, Kupfer T, Braunschweig H, Brun R, Mudogo V. Chem. Eur. J. 2013; 19: 916
- 16d Werbovetz KA, Bhattacharjee AK, Brendle JJ, Scovill JP. Bioorg. Med. Chem. 2000; 8: 1741
- 16e Savinainen JR, Kokkola T, Salo OM. H, Poso A, Järvinen T, Laitinen JT. Br. J. Pharmacol. 2005; 145: 636
- 16f Kouznetsov VV, Meléndez Gómez CM, Derita MG, Svetaz L, del Olmo E, Zacchino SA. Bioorg. Med. Chem. 2012; 20: 6506
- 17 Gao F, Liu H, Li L, Guo J, Wang Y, Zhao M, Peng S. Bioorg. Med. Chem. Lett. 2015; 25: 4434
- 18 Nishikawa-Shimono R, Sekiguchi Y, Koami T, Kawamura M, Wakasugi D, Watanabe K, Wakahara S, Kimura K, Yamanobe S, Takayama T. Bioorg. Med. Chem. 2013; 21: 7674
- 19 Costa EV, Pinheiro ML, Barison A, Campos FR, Salvador MJ, Maia BH. L. N. S, Cabral EC, Eberlin MN. J. Nat. Prod. 2010; 73: 1180
- 20 Reux B, Nevalainen T, Raitio KH, Koskinen AM. P. Bioorg. Med. Chem. 2009; 17: 4441
- 21a Wan M, Lou H, Liu L. Chem. Commun. 2015; 51: 13953
- 21b Adib M, Pashazadeh R, Rajai-Daryasarei S, Kabiri R, Gohari SJ. A. Synlett 2016; 27: 2241
- 22 Matcha K, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 2082
- 23 Siddaraju Y, Lamani M, Prabhu KR. J. Org. Chem. 2014; 79: 3856
- 24 Ali W, Behera A, Guin S, Patel BK. J. Org. Chem. 2015; 80: 5625
- 25 Chen J, Wan M, Hua J, Sun Y, Lv Z, Li W, Liu L. Org. Biomol. Chem. 2015; 13: 11561
- 26 Siddaraju Y, Prabhu KR. Tetrahedron 2016; 72: 959
- 27 Xie Z, Liu L, Chen W, Zheng H, Xu Q, Yuan H, Lou H. Angew. Chem. Int. Ed. 2014; 53: 3904
- 28 Liu X, Meng Z, Li C, Lou H, Liu L. Angew. Chem. Int. Ed. 2015; 54: 6012
- 29 Sun S, Li C, Floreancig PE, Lou H, Liu L. Org. Lett. 2015; 17: 1684
- 30 Liu X, Sun S, Meng Z, Lou H, Liu L. Org. Lett. 2015; 17: 2396
- 31 Nicewicz DA, NguyenT M. ACS Catal. 2014; 4: 355
- 32 Xie J, Jina H, Xu P, Zhu C. Tetrahedron Lett. 2014; 55: 36
- 33 Lang X, Chen X, Zhao J. Chem. Soc. Rev. 2014; 43: 473
- 34 Hu J, Wang J, Nguyen TH, Zheng N. Beilstein J. Org. Chem. 2013; 9: 1977
- 35 Rovelli D, Fagnoni M, Albini A. Chem. Soc. Rev. 2013; 42: 97
- 36 Yoon TP, Ischay MA, Du JJ. Nat. Chem. 2010; 2: 527
- 37 Fukuzumi S, Kotani H, Ohkubo K, Ogo S, Tkachenko NV, Lemmetyinen H. J. Am. Chem. Soc. 2004; 126: 1600
- 38 Lin YC, Chen CT. Org. Lett. 2009; 11: 4858
- 39 Fischer C, Kerzig C, Zilate B, Wenger OS, Sparr C. ACS Catal. 2019; 10: 210
- 40 Fukuzumi S, Ohkubo K, Suenobu T, Kato K, Fujitsuka M, Ito O. J. Am. Chem. Soc. 2001; 123: 8459
- 41 Ohkubo K, Mizushima K, Iwata R, Souma K, Suzuki N, Fukuzumi S. Chem. Commun. 2010; 46: 601
- 42 MacKenzie IA, Wang L, Onuska NP. R, Williams OF, Begam K, Moran AM, Dunietz BD, Nicewicz DA. Nature 2020; 580: 76
- 43 Yan H, Song J, Zhu S, Xu HC. CCS Chem. 2021; 3: 317
- 44 Tlili A, Lakhdar S. Angew. Chem. Int. Ed. 2021; 60: 19526
- 45 Capaldo L, Ravelli D, Fagnoni M. Chem. Rev. 2022; 122: 1875
- 46a Singh PP, Sinha S, Nainwal P, Singh PK, Srivastava V. RSC Adv. 2024; 14: 2590
- 46b Singh PP, Srivastava V. ChemistrySelect 2023; 8: e202302732
- 46c Srivastava V, Sinha S, Kumar D, Singh PP. Tetrahedron Green Chem. 2023; 1: 100009
- 46d Singh PP, Singh J, Srivastava V. RSC Adv. 2023; 13: 10958
- 46e Singh PP, Singh PK, Srivastava V. Org. Chem. Front. 2023; 10: 216
- 46f Singh PP, Sinha S, Pandey G, Srivastava V. RSC Adv. 2022; 12: 29826
- 46g Srivastava V, Singh PK, Singh PP. J. Photochem. Photobiol., C 2022; 50: 100488
- 46h Srivastava V, Singh PK, Tivari S, Singh PP. Org. Chem. Front. 2022; 9: 1485
- 46i Srivastava V, Singh PK, Srivastava A, Sinha S, Singh PP. Photochem 2021; 1: 237
- 46j Singh PP, Singh PK, Beg MZ, Kashyap A, Srivastava V. Synth. Commun. 2021; 51: 3033
- 46k Srivastava V, Singh PK, Srivastava A, Singh PP. RSC Adv. 2021; 11: 14251
- 46l Singh PP, Srivastava V. Org. Biomol. Chem. 2021; 19: 313
- 46m Srivastava A, Singh PK, Ali A, Singh PP, Srivastava V. RSC Adv. 2020; 10: 39495
- 47a Tivari S, Beg MZ, Kashyap A, Singh PK, Singh PP, Gahtori P, Srivastava V. Results Chem. 2024; 7: 101249
- 47b Beg MZ, Tivari S, Kashyap A, Singh PK, Singh PP, Nainwal P, Srivastava V. J. Heterocycl. Chem. 2024; 61: 458
- 47c Kumar R, Garima K, Srivastava V, Singh PP, Singh PK. Tetrahedron Lett. 2023; 133: 154841
- 47d Singh VP, Singh AK, Srivastava V, Singh PP. Tetrahedron 2023; 147: 133658
- 47e Mishra M, Singh PP, Nainwal P, Tivari S, Srivastava V. Tetrahedron Lett. 2023; 129: 154749
- 47f Srivastava V, Tivari S, Singh PK, Singh PP. Catal. Lett. 2024; 154: 771
- 47g Beg MZ, Singh PK, Singh PP, Srivastava M, Srivastava V. Mol. Divers. 2024; 28: 61
- 47h Singh SP, Srivastava V, Singh PK, Singh PP. Tetrahedron 2023; 132: 133245
- 47i Mishra M, Srivastava V, Singh PK, Singh PP. Croat. Chem. Acta 2022; 95: 25
- 47j Tivari S, Singh PK, Singh PP, Srivastava V. RSC Adv. 2022; 12: 35221
- 47k Srivastava V, Singh PK, Singh PP. Rev. Roum. Chim. 2020; 65: 221
- 47l Srivastava V, Singh PK, Singh PP. Tetrahedron Lett. 2019; 60: 151041
- 47m Srivastava V, Singh PK, Singh PP. Tetrahedron Lett. 2019; 60: 1333
- 47n Srivastava V, Singh PK, Singh PP. Tetrahedron Lett. 2019; 60: 40
- 48 Keshari T, Yadav VK, Srivastava VP, Yadav LD. S. Green Chem. 2014; 16: 3986
- 49 Fekarurhobo GK, Angaye SS, Obomann FG. J. Emerging Trends Eng. Appl. Sci. 2013; 4: 394
- 50 General Procedure for the Synthesis of (4-Phenylisoquinolin-1-yl)(p-tolyl)-methanone A mixture of 4-phenyl isoquinoline (1a, 0.5 mmol), 4-methyl benzaldehyde (2a, 0.5 mmol), and 2 mol% acridinium in 2 mL MeCN was stirred at room temperature for 8 h. The completion of the reaction was confirmed by thin-layer chromatography (TLC) using hexane/ethyl acetate as an eluent (7:3). The crude product was then recrystallized from ethanol to afford pure product 3a. Analytical Data for (4-Phenylisoquinolin-1-yl)(p-tolyl)-methanone (3a) White solid; yield 92%; mp 126–128 °C. 1H NMR (400 MHz, CDCl3): δ = 8.55 (s, 1 H), 8.26 (d, J = 8.4 Hz, 1 H), 8.00 (d, J = 8.8 Hz, 1 H), 7.91 (d, J = 8.0 Hz, 2 H), 7.71–7.67 (m, 1 H), 7.62–7.51 (m, 1 H), 7.56–7.53 (m, 4 H), 7.52–7.48 (m, 1 H), 7.29 (d, J = 8.0 Hz, 2 H), 2.43 (s, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 194.6, 156.1, 144.7, 141.0, 136.6, 135.1, 135.1, 134.2, 130.9, 130.7, 130.1, 129.2, 128.7, 128.2, 128.0, 126.4, 126.2, 125.3, 21.8 ppm.