Subscribe to RSS
DOI: 10.1055/a-2489-7403
Synthesis of Indenoquinoxalinone-5-(furano, pyrano, and oxepino)spiro Ethers from Alkenylated Propargyl Ethers of Indenoquinoxalinone via Ring-Closing Enyne Metathesis
A.J.C.P. thanks VIT, Vellore for the TRA fellowship and S. K. thanks VIT-SEED GRANT SG20230025.

Abstract
A facile and efficient synthetic route for indenoquinoxalinone spiro-oxacyclic systems with small to medium ring sizes has been developed via an efficient ring-closing enyne metathesis (RCEYM) as a key step. The starting material O-alkylated propargylic alcohol of indenoquinoxalinone is synthesized via a two-step protocol: 1. propargylation of ketone followed by 2. alkenylation of the resulting propargyl ethers with alkenyl bromides. Upon being subjected to RCEYM using Grubbs II catalyst, the resulting O-alkenylated propargyl derivative furnished the spiro-ethereal products in good yield. Spectroscopic data and single-crystal XRD analysis characterized the structures of the products. A plausible mechanism is provided.
Key words
ring-closing enyne metathesis - indenoquinoxalinone - alkenyl ether - Grubbs II catalyst - oxacyclic spiro compoundsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2489-7403.
- Supporting Information
Publication History
Received: 24 October 2024
Accepted after revision: 26 November 2024
Accepted Manuscript online:
26 November 2024
Article published online:
07 January 2025
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 Liao L.-G, Song M.-M, Feng J.-F, Tan M, Liu F, Qiu Z.-J, Zhang S, Li B.-J. Molecules 2022; 27: 580
- 2a Zimnitskiy NS, Barkov AY, Ulitko MV, Kutyashev IB, Korotaev VY, Sosnovskikh VY. New J. Chem. 2020; 44: 16185
- 2b Thadem N, Rajesh M, Das S. RSC Adv. 2021; 11: 29934
- 3a Barkov AY, Zimnitskiy NS, Kutyashev IB, Korotaev VY, Sosnovskikh VY. Chem. Heterocycl. Compd. 2018; 54: 43
- 3b Korotaev VY, Zimnitskiy NS, Barkov AY, Kutyashev IB, Sosnovskikh VY. Chem. Heterocycl. Compd. 2018; 54: 905
- 3c Moghaddam FM, Moafi A, Jafari B, Vilinger A, Langer P. Synlett 2020; 31: 267
- 4a Barkov AY, Zimnitskiy NS, Korotaev VY, Kutyashev IB, Moshkin VS, Sosnovskikh VY. Chem. Heterocycl. Compd. 2017; 53: 451
- 4b Singh R, Saini MR. ChemistrySelect 2022; 7: e202104080
- 4c Arumugam N, Soliman SM, Viswanathan V, Almansour AI, Kumar RS, Mahalingam SM, Krishnamoorthy BS, Dege N, Karuppiah P, Perumal K. J. Mol. Struct. 2023; 1293: 136189
- 4d Rahimi S, Ghandi M, Fallahnezhad M, Abbasi A. Mol. Diversity 2024; 28: 133
- 5 Borah B, Bora J, Ramesh P, Chowhan LR. RSC Adv. 2022; 12: 12843
- 6a Singh R, Bhardwaj D, Saini MR. RSC Adv. 2021; 11: 4760
- 6b Das S. Tetrahedron 2022; 122: 132954
- 6c Rezvanian A, Khodadadi B, Tafreshi S. ChemistrySelect 2022; 7: e202202360
- 7 Sabouri N, Mahdavinia GH, Notash B. Chin.Chem.Lett. 2016; 27: 1040
- 8a Adak AK, Mandal A, Manna SK, Mondal SK, Jana A, Ghosh D, Kundu D, Samanta S, Ray JK. Synth. Commun. 2016; 46: 452
- 8b Zheng L, Wang H, Fan A, Li S.-M. Nat. Commun. 2020; 11: 4914
- 8c Rafiee F, Hasani S. Appl. Organomet. Chem. 2022; 36: e6555
- 9a Baudy RB. Expert Opin. Ther. Pat. 1994; 4: 1173
- 9b Babar K, Zahoor AF, Ahmad S, Akhtar R. Mol. Diversity 2020; 25: 2487
- 10 Sinka V, Martin VS, Cruz DA, Padron JI. Eur. J. Org. Chem. 2020; 6704
- 11 Chiranjeevi Padmashrija AJ, Kannadasan S, Shanmugam P. ChemistrySelect 2023; 8: e202302522
- 12a Kim S.-H, Zuercher WJ, Bowden NB, Grubbs RH. J. Org. Chem. 1996; 61: 1073
- 12b Trnka TM, Grubbs RH. Acc. Chem. Res. 2001; 34: 18
- 12c Diver ST, Giessert AJ. Chem. Rev. 2004; 104: 1317
- 12d Li J, Lee D. Eur. J. Org. Chem. 2011; 4269
- 13a Fu GC, Grubbs RH. J. Am. Chem. Soc. 1992; 114: 5426
- 13b Mori M. Top. Organomet. Chem. . Springer; Berlin/Heidelberg: 1998. 1 133
- 13c Villar H, Fringsa M, Bolm C. Chem. Soc. Rev. 2007; 36: 55
- 14a Bentz D, Laschat S. Synthesis 2000; 1766
- 14b Subrahmanyam AV, Palanichamy K, Kaliappan K. Chem. Eur. J. 2010; 16: 8545
- 14c Zhang L.-L, Zhang W.-Z, Ren X, Tan X.-Y, Lu X.-B. Tetrahedron Lett. 2012; 53: 3389
- 14d Nishikawa K, Niwa T, Nishikibe K, Kumagai M, Morimoto Y. Chem. Eur. J. 2017; 27: 11045
- 14e Kandimalla SR, Sabitha G. Adv. Synth. Catal. 2017; 359: 3444
- 15 George K, Kannadasan S. Tetrahedron 2023; 142: 133544
- 16a Heerding DA, Takata DT, Kwon C, Huffman WF, Samanen J. Tetrahedron Lett. 1998; 39: 6815
- 16b Sémeril D, Cléran M, Perez AJ, Bruneau C, Dixneuf PH. J. Mol. Catal. A: Chem. 2002; 190: 9
- 16c Lee H.-Y, Kim HY, Tae H, Kim BG, Lee J. Org. Lett. 2003; 5: 3439
- 16d Serra M, Bernardi E, Colombo L. Synthesis 2020; 53: 785
- 17 George K, Kannadasan S. Tetrahedron 2023; 142: 133544
- 18a Chen S, Yuan F, Zhao H, Li B. Res. Chem. Intermed. 2013; 39: 2391
- 18b Athira M, Shanmugam P. SynOpen 2021; 5: 17
- 18c Athira M, Meerakrishna RS, Shanmugam P. New J. Chem. 2020; 44: 6652
- 19 CCDC 2332970 (2a) and CCDC 2335193 (4b) contain the supplementary crystallographic data for this paper. The data are provided free of charge by the joint Cambridge Crystallographic Data Centre and FIZ Karlsruhe online deposition service via. www.ccdc.cam.ac.uk/structures
- 20 General Procedure for the Synthesis of O-Allylation of 11-(Arylethynyl)-11H-indeno[1,2-b]quinoxaline-11-ols 4a–k To an oven-dried 100 mL RBF fitted with a septum provided with nitrogen atmosphere were added 300 mg of synthesized 11-(arylethynyl)-11H-indeno[1,2-b] quinoxaline-11-ol (2a–k) dissolved in 5 mL DMF. Then sodium hydride (1.0 equiv.) was added at 0 °C and kept for stirring, maintaining the ice-cold condition throughout the reaction. After stirring for an hour, add allyl bromide using a syringe. Then, again, the reaction proceeded to stir for another hour. After this, the reaction was monitored using TLC to complete the reaction. On completion, ethyl acetate, followed by water, is slowly added to the reaction mixture. Then, the extracted organic layer was washed with a brine solution. After three washes, the combined organic layer was concentrated and purified using silica gel column chromatography. The O-allylated products were isolated with a 2–5% ethyl acetate/hexane solvent system.
- 21 Spectroscopic Data for 11-(Allyloxy)-11-(Phenylethynyl)-11H-indeno[1,2-b]quinoxaline (4a) Colourless solid: yield 96%; mp 142–144 °C; Rf = 0.92 (25% EtOAc–hexane). FTIR (KBr): νmax = 3070, 2868, 2225, 1968, 1587, 1472, 1329, 1105, 1036, 958, 752, 687, 558, 489 cm–1. 1H NMR (400.3 MHz, CDCl3/TMS): δ = 8.22 (dd, J = 8.1, 1.5 Hz, 1 H), 8.19–8.12 (m, 2 H), 7.94 (dd, J = 6.2, 1.9 Hz, 1 H), 7.81–7.70 (m, 2 H), 7.68–7.57 (m, 2 H), 7.47 (dd, J = 7.8, 1.6 Hz, 2 H), 7.36–7.23 (m, 3 H), 5.96 (ddd, J = 16.2, 10.9, 5.7 Hz, 1 H), 5.25 (dd, J = 17.2, 1.5 Hz, 1 H), 5.11 (dd, J = 10.4, 1.3 Hz, 1 H), 4.61–4.48 (m, 2 H). 13C NMR (100.6 MHz, CDCl3/TMS): δ = 159.4, 153.5, 146.8, 143.1, 141.8, 136.6, 134.6, 132.6, 132.3, 130.9, 130.5, 130.3, 129.5, 129.4, 129.1, 128.4, 126.0, 122.6, 122.2, 117.5, 87.4, 85.6, 67.7 ppm. DEPT-135 (100.6 MHz, CDCl3/TMS): δ = 134.4 (+), 132.4 (+), 132.1 (+), 130.7 (+), 130.3 (+), 130.0 (+), 129.2 (+), 129.1 (+), 128.8 (+), 128.2 (+), 125.8 (+), 122.4 (+), 117.3 (–), 67.5 (–). HRMS (ESI): m/z calcd for C26H18N2O [M + H]: m/z calcd: 375.1497; found: 375.1498.
- 22 General Procedure for RCEYM of Various O-Alkylated 11-(Arylethynyl)-11H-indeno[1,2-b]quinoxalin-11-ol 100 mg of the O-alkylated propargyl alcohol starting material (4a–k, 5a–c, and 6a–c; 1.0 equiv.) were taken in a 25 mL RBF and dissolved in 3 mL of toluene at 90 °C. Then, Grubbs II catalyst (20 mol%) was added, allowing the reaction to proceed for 12–48 h at the same temperature. The reaction was monitored using TLC. Then, the solvent was evaporated under reduced pressure. Then, the crude was purified using silica gel column chromatography. The products were isolated with 5–10% EtOAc–hexane.
- 23 Spectroscopic Data for 3-{1-(p-Tolyl)vinyl)-5H-spiro[furan-2,11′-indeno[1,2-b]quinoxaline} (7b) Golden yellow liquid: yield 68%, Rf = 0.86 (25% EtOAc–hexane). FTIR (KBr): νmax = 2858, 1784, 1568, 1504, 1343, 1205, 1054, 912, 829, 751, 494 cm–1. 1H NMR (400.3 MHz, CDCl3/TMS): δ = 8.14–7.97 (m, 3 H), 7.68–7.57 (m, 2 H), 7.57–7.52 (m, 1 H), 7.52–7.44 (m, 2 H), 7.01 (d, J = 8.0 Hz, 2 H), 6.91 (d, J = 7.9 Hz, 2 H), 6.28 (s, 1 H), 5.24–5.09 (m, 1 H), 5.02 (dd, J = 14.2, 1.6 Hz, 1 H), 4.56 (s, 1 H), 4.15 (s, 1 H), 2.19 (s, 3 H) ppm. 13C NMR (100.6 MHz, CDCl3/TMS): δ = 161.7, 153.9, 147.8, 142.9, 142.0, 141.2, 140.9, 138.4, 137.3, 137.0, 132.3, 131.4, 130.4, 129.9, 129.8, 129.1, 128.9, 128.5, 128.2, 125.2, 122.4, 115.6, 93.2, 75.5, 21.0 ppm. DEPT-135 (100.6 MHz, CDCl3/TMS): δ = 132.3 (+), 131.4 (+), 130.4 (+), 129.9 (+), 129.8 (+), 129.1 (+), 128.9 (+), 128.5 (+), 128.2 (+), 125.2 (+), 122.4 (+), 115.6 (–), 75.5 (–), 21.0 (+). HRMS (ESI): m/z calcd for C27H20N2O [M + H]: m/z calcd: 389.1654; found: 389.1657.
- 24 Spectroscopic Data for 3′-(1-Phenylvinyl)-5′,6′-dihydrospiro{indeno[1,2-b]quinoxaline-11,2′-pyran} (8a) Golden yellow liquid: 32%; Rf = 0.80 (25% EtOAc–hexane). FTIR (KBr): νmax = 3248, 1733, 1572, 1477, 1398, 1146, 1061, 994, 893, 769, 682, 581, 512 cm–1. 1H NMR (400.3 MHz, CDCl3/TMS): δ = 8.07–8.00 (m, 1 H), 7.96–7.86 (m, 2 H), 7.66–7.56 (m, 2 H), 7.52–7.46 (m, 1 H), 7.44–7.35 (m, 2 H), 6.83–6.65 (m, 5 H), 6.40 (dd, J = 5.4, 2.9 Hz, 1 H), 4.92–4.86 (m, 1 H), 4.59 (d, J = 1.4 Hz, 1 H), 4.50 (d, J = 1.2 Hz, 1 H), 4.06 (m, 1 H), 2.74–2.65 (m, 1 H), 2.52–2.39 (m, 1 H) ppm. 13C NMR (100.6 MHz, CDCl3/TMS): δ = 158.6, 154.4, 151.7, 148.6, 143.2, 142.5, 140.0, 134.4, 133.8, 133.1, 131.2, 131.0, 131.0, 130.0, 129.7, 129.4, 128.8, 126.8, 122.6, 121.1, 118.0, 76.7, 21.1 ppm. DEPT-135 (100.6 MHz, CDCl3/TMS): δ = 131.7 (+), 130.0 (+), 130.0 (+), 129.8 (+), 129.6 (+), 128.8 (+), 128.6 (+), 128.1 (+), 127.1 (+), 126.8 (+), 125.7 (+), 122.1 (+), 116.0 (–), 61.2 (–), 25.4 (–). HRMS (ESI): m/z calcd for C27H20N2O [M + H]: 389.1654; found: 389.1653.
- 25 Spectroscopic Data for 3′-(1-{[1,1'-biphenyl]-4-yl}vinyl)-6′,7′-dihydro-5′H-spiro{indeno[1,2-b]quinoxaline-11,2′-oxepine} (9b) Golden yellow liquid: 57%; Rf = 0.88 (25% EtOAc–hexane). FTIR (KBr): νmax = 2872, 1765, 1577, 1481, 1329, 1205, 1109, 1063, 998, 838, 751, 696, 562, 507 cm–1. 1H NMR (400.3 MHz, CDCl3/TMS): δ = 7.95–7.86 (m, 2 H), 7.81 (d, J = 7.1 Hz, 1 H), 7.65 (d, J = 7.4 Hz, 1 H), 7.60–7.51 (m, 2 H), 7.45–7.34 (m, 3 H), 7.32–7.25 (m, 2 H), 7.25–7.16 (m, 2 H), 6.87 (d, J = 8.2 Hz, 2 H), 6.66 (d, J = 8.2 Hz, 2 H), 6.30 (dd, J = 7.5, 5.6 Hz, 1 H), 4.80–4.71 (m, 1 H), 4.63 (dd, J = 9.9, 1.5 Hz, 2 H), 4.04–3.95 (m, 1 H), 3.01–2.92 (m, 1 H), 2.68–2.62 (m, 1 H), 2.41–2.38 (m, 1 H), 2.19–2.03 (m, 1 H) ppm. 13C NMR (100.6 MHz, CDCl3/TMS): δ = 154.0, 149.8, 148.7, 142.3, 142.1, 141.0, 140.8, 139.7, 139.3, 136.5, 134.3, 131.6, 129.8, 129.7, 129.5, 128.8, 128.5, 127.9, 127.0, 126.9, 126.0, 125.7, 121.9, 115.6, 86.9, 28.4, 24.1 ppm. DEPT-135 (100.6 MHz, CDCl3/TMS): δ = 134.3 (+), 131.6 (+), 129.8 (+), 129.7 (+), 129.5 (+), 128.8 (+), 128.5 (+), 128.5 (+), 127.9 (+), 127.0 (+), 126.9 (+), 126.0 (+), 125.7 (+), 121.9 (+), 115.6 (–), 65.8 (–), 28.4 (–), 24.1 (–). HRMS (ESI): m/z calcd for C34H26N2O [M + H]: 479.2123; found: 479.2124.
- 26 Kavitha Preethi R, Kannadasan S, Shanmugam P. Tetrahedron Lett. 2023; 120: 154448