Subscribe to RSS

DOI: 10.1055/a-2464-8904
A Photocatalytic C(sp)–B Bond Formation Employing SOMOphilic Alkynyl Sulfones and Nucleophilic Boryl Radicals
H2020 Marie Skłodowska-Curie Actions (Grant 101104383). J.C. thanks the European Union for funding from an MSCA Postdoctoral Fellowship (project 101104383-DES-B-CAT). E.M.A. thanks the EU funding from an MSCA Postdoctoral Fellowship (project 101150311-NOZONE). E.R.-C. acknowledges Xunta de Galicia for her postdoctoral fellowship (ED481B 2022-056). The authors gratefully acknowledge the computing time provided to them at the NHR Center NHR4CES at RWTH Aachen University (project number p0021519). This is funded by the Federal Ministry of Education and Research, and the state governments participating on the basis of the resolutions of the GWK for national high-performance computing at universities (www.nhr-verein.de/unsere-partner).

Abstract
Alkynylboron compounds are important scaffolds with broad applicability in organic synthesis. In contrast to polar or metal-catalyzed processes, here a radical approach is employed for the addition of nucleophilic boryl radicals to electrophilic SOMOphiles for the construction of the C(sp)–B bond. The reaction renders the corresponding alkynylated amine boranes with broad functional group compatibility. In addition, theoretical studies have been carried out by means of DFT to understand the reactivity and selectivity of the addition process.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2464-8904.
- Supporting Information
Publication History
Received: 26 September 2024
Accepted after revision: 08 November 2024
Accepted Manuscript online:
08 November 2024
Article published online:
20 January 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Miyaura N. Organoboron Compounds. In Cross-Coupling Reactions, Topics in Current Chemistry, Vol. 219. Miyaura N. Springer; Berlin: 2002: 11-59
- 1b Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, 2nd ed. Hall D. Wiley-VCH; Weinheim: 2011
- 2a Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
- 2b Brown DG, Boström J. J. Med. Chem. 2016; 59: 4443
- 3a Jiao J, Nishihara Y. J. Organomet. Chem. 2012; 721-722: 3
- 3b Nandy S, Paul S, Das KK, Kumar P, Ghorai D, Panda D. Org. Biomol. Chem. 2021; 19: 7276
- 4a Yamaguchi M, Waseda T, Hirao I. Chem. Lett. 1983; 35
- 4b Chen H, Deng V. J. Organomet. Chem. 2000; 603: 189
- 4c Oh CH, Reddy VR. Tetrahedron Lett. 2004; 45: 8545
- 4d Wu TR, Chong JM. J. Am. Chem. Soc. 2005; 127: 3244
- 4e Nishihara Y, Saito D, Inoue E, Okada Y, Miyazaki M, Inoue Y, Takagi K. Tetrahedron Lett. 2010; 51: 306
- 4f Yasumoto K, Kano T, Maruoka K. Org. Lett. 2019; 21: 3214
- 5a Dötz KH, Tomuschat P. Chem. Soc. Rev. 1999; 28: 187
- 5b Davies MW, Johnson CN, Harrity JP. A. Chem. Commun. 1999; 2107
- 5c Moore JE, York M, Harrity JP. A. Synlett 2005; 860
- 5d Helm MD, Moore JE, Plant A, Harrity JP. A. Angew. Chem. Int. Ed. 2005; 44: 3889
- 5e Helm MD, Plant A, Harrity JP. A. Org. Biomol. Chem. 2006; 4: 4278
- 5f Helm MD, Plant A, Harrity JP. A. Synlett 2007; 2885
- 5g Gomez-Bengoa E, Helm MD, Plant A, Harrity JP. A. J. Am. Chem. Soc. 2007; 129: 2691
- 5h Auvinet A.-L, Harrity JP. A, Hilt G. J. Org. Chem. 2010; 75: 3893
- 5i Auvinet A.-L, Harrity JP. A. Angew. Chem. Int. Ed. 2011; 50: 2769
- 6a Davies MW, Wybrow RA. J, Johnson CN, Harrity JP. A. Chem. Commun. 2001; 1558
- 6b Moore JE, Goodenough KM, Spinks D, Harrity JP. A. Synlett 2002; 2071
- 6c Moore JE, Davies MW, Goodenough KM, Wybrow RA. J, York M, Johnson CN, Harrity JP. A. Tetrahedron 2005; 61: 6707
- 6d Huang J, Macdonald SJ. F, Cooper AW. J, Fisher G, Harrity JP. A. Tetrahedron Lett. 2009; 50: 5539
- 6e Grob JE, Nunez J, Dechantsreiter MA, Hamann LG. J. Org. Chem. 2011; 76: 10241
- 7a Metzler N, Nöth H, Thomann M. Organometallics 1993; 12: 2423
- 7b Nishihara Y, Miyasaka M, Okamoto M, Takahashi H, Inoue E, Tanemura K, Takagi K. J. Am. Chem. Soc. 2007; 129: 12634
- 7c Botvinik A, Quntar AA. A, Rubinstein A, Srebnik M. J. Organomet. Chem. 2009; 694: 3349
- 7d Hussain MM, Li H, Hussain N, Ureña M, Carroll PJ, Walsh PJ. J. Am. Chem. Soc. 2009; 131: 6516
- 7e Hussain MM, Hernández-Toribio J, Carroll PJ, Walsh PJ. Angew. Chem. Int. Ed. 2011; 50: 6337
- 7f Hussain N, Hussain MM, Carroll PJ, Walsh PJ. Chem. Sci. 2013; 4: 3946
- 8a Brown HC, Sinclair JA. J. Organomet. Chem. 1977; 131: 163
- 8b Brown HC, Bhat NG, Srebnik M. Tetrahedron Lett. 1988; 29: 2631
- 8c Soderquist JA, Rane AM, Matos K, Ramos J. Tetrahedron Lett. 1995; 36: 6847
- 8d Blanchard C, Vaultier M, Mortier J. Tetrahedron Lett. 1997; 38: 8863
- 8e Ramachandran PV, Hamann HJ. Molecules 2023; 28: 3433
- 9 Leung S.-W, Singleton DA. J. Org. Chem. 1997; 62: 1955
- 10 Singleton DA, Leung S. J. Organomet. Chem. 1997; 544: 157
- 11a Lee C.-I, Zhou J, Ozerov OV. J. Am. Chem. Soc. 2013; 135: 3560
- 11b Lee C.-I, DeMott JC, Pell CJ, Christopher A, Zhou J, Bhuvanesh N, Ozerov OV. Chem. Sci. 2015; 6: 6572
- 11c Pell CJ, Ozerov OV. Inorg. Chem. Front. 2015; 2: 720
- 11d Foley BJ, Bhuvanesh N, Zhou J, Ozerov OV. ACS Catal. 2020; 10: 9824
- 12 Hu J.-R, Liu L.-H, Hu X, Ye H.-D. Tetrahedron 2014; 70: 5815
- 13a Tsuchimoto T, Utsugi H, Sugiura T, Horio S. Adv. Synth. Catal. 2014; 357: 77
- 13b Procter RJ, Uzelac M, Cid J, Rushworth PJ, Ingleson MJ. ACS Catal. 2019; 9: 5760
- 14 Romero EA, Jazzar R, Bertrand G. Chem. Sci. 2017; 8: 165
- 15 Birepinte M, Liautard V, Chabaud L, Pucheault M. Chem. Eur. J. 2020; 26: 3236
- 16 Wei D, Carboni B, Sortais J.-B, Darcel C. Adv. Synth. Catal. 2018; 360: 3649
- 17 Desrosiers V, Garcia CZ, Fontaine F.-G. ACS Catal. 2020; 10: 11046
- 18a Taniguchi T. Eur. J. Org. Chem. 2019; 6308
- 18b Taniguchi T. Chem. Soc. Rev. 2021; 50, 8995
- 18c Capaldo L, Noël T, Ravelli D. Chem Catal. 2022; 2: 957
- 19a Xu W, Jiang H, Leng J, Ong H.-W, Wu J. Angew. Chem. Int. Ed. 2020; 59: 4009
- 19b Dai W, Geib SJ, Curran DP. J. Am. Chem. Soc. 2020; 142: 6261
- 19c Xia P.-J, Ye Z.-P, Hu Y.-Z, Xiao J.-A, Chen K, Xiang H.-Y, Chen X.-Q, Yang H. Org. Lett. 2020; 22: 1742
- 19d Takahashi K, Shimoi M, Watanabe T, Maeda K, Geib SJ, Curran DP, Taniguchi T. Org. Lett. 2020; 22: 2054
- 20a Ren S.-C, Zhang F.-L, Xu A.-Q, Yang Y, Zheng M, Zhou X, Fu Y, Wang Y.-F. Nat. Commun. 2019; 10: 1934
- 20b Huang Y.-S, Wang J, Zheng W.-X, Zhang F.-L, Yu Y.-J, Zheng M, Zhou X, Wang Y.-F. Chem. Commun. 2019; 55: 11904
- 20c Liu X, Lin EE, Chen G, Li J.-L, Liu P, Wang H. Org. Lett. 2019; 21: 8454
- 20d Jin J.-K, Zheng W.-X, Xia H.-M, Zhang F.-L, Wang Y.-F. Org. Lett. 2019; 21: 8414
- 21a Xia P.-J, Song D, Ye Z.-P, Hu Y.-Z, Xiao J.-A, Xiang H.-Y, Chen X.-Q, Yang H. Angew. Chem. Int. Ed. 2020; 59: 6706
- 21b Zhu C, Gao S, Li W, Zhu C. Chem. Commun. 2020; 56: 15647
- 21c Qi J, Zhang F.-L, Jin J.-K, Zhao Q, Li B, Liu L.-X, Wang Y.-F. Angew. Chem. Int. Ed. 2020; 59: 12876
- 22a Yoshimura A, Takamachi Y, Han L.-B, Ogawa A. Chem. Eur. J. 2015; 21: 13930
- 22b Yoshimura A, Takamachi Y, Mihara K, Saeki T, Kawaguchi S.-i, Han L.-B, Nomoto A, Ogawa A. Tetrahedron 2016; 72: 7832
- 22c Shimoi M, Watanabe T, Maeda K, Curran DP, Taniguchi T. Angew. Chem. Int. Ed. 2018; 57: 9485
- 22d Takahashi K, Geib SJ, Maeda K, Curran DP, Taniguchi T. Org. Lett. 2021; 23: 1071
- 23a Brand JP, Waser J. Chem. Soc. Rev. 2012; 41: 4165
- 23b Le Vaillant F, Waser J. Chem. Sci. 2019; 10: 8909
- 23c Ge D, Wangb X, Chu X.-Q. Org. Chem. Front. 2021; 8: 5145
- 23d Du EL, Waser J. Chem. Commun. 2023; 59: 1589
- 24a Wu W, Hou X, Zheng Y, Li P, Lu D. J. Org. Chem. 2017; 82: 2898
- 24b Kim JH, Constantin T, Simonetti M, Llaveria J, Sheikh NS, Leonori D. Nature 2021; 595: 677
- 25 Buettner CS, Stavagna C, Tilby MJ, Górski B, Douglas JJ, Yasukawa N, Leonori D. J. Am. Chem. Soc. 2024; 146: 24042
- 26 Spielvogel BF, Wojnowich L, Das MK, McPhail AT, Hargrave KD. J. Am. Chem. Soc. 1976; 98: 5702
- 27a Meesin J, Katrun P, Pareseecharoen C, Pohmakotr M, Reutrakul V, Soorukram D, Kuhakarn C. J. Org. Chem. 2016; 81: 2744
- 27b Ociepa M, Turkowska J, Gryko D. ACS Catal. 2018; 8: 11362
- 28 Koo J, Kim W, Jhun HB, Park S, Song D, You Y, Lee HG. J. Am. Chem. Soc. 2024; 146: 22874
- 29a Ayers PW, Morrison RC, Roy RK. J. Chem. Phys. 2002; 116: 8731
- 29b Parr RG, Yang W. J. Am. Chem. Soc. 1984; 106: 4049
- 30 Shang T.-Y, Lu L.-H, Cao Z, Liu Y, He W.-M, Yu B. Chem. Commun. 2019; 55: 5408
- 31 Heitz DR, Rizwan K, Molander GA. J. Org. Chem. 2016; 81: 7308
- 32 Choy PY, Chow WK, So CM, Lau CP, Kwong FY. Chem. Asian J. 2010; 16: 9982
- 33 Corpas J, Alonso M, Leonori D. Chem. Sci. 2024; 15: 19113
- 34 Chen H, Deng M.-Z. J. Organomet. Chem. 2000; 603: 189
- 35 Li C, Zhao P, Li R, Zhang B, Zhao W. Angew. Chem. Int. Ed. 2020; 59: 10913
- 36 Meng J.-J, Gao M, Dong M, Wei Y.-P, Zhang W.-Q. Tetrahedron Lett. 2014; 55: 2107
- 37 Cívicos JF, Alonso DA, Nájera C. Adv. Synth. Catal. 2013; 355: 203
For selected reviews, see:
For selected examples, see:
For selected examples, see:
For selected examples, see: