RSS-Feed abonnieren

DOI: 10.1055/a-2415-3708
Ruthenium(II)-Catalyzed C–H Allylation of N,N-Dialkylthiobenzamides with Allyl Methyl Carbonate by Sulfur Coordination
This work was supported by the National Natural Science Foundation of China (22171034), the Natural Science Foundation of Liaoning Province (2023MS116), and the Fundamental Research Funds for the Central Universities (DUT22LAB606).

Abstract
This report describes a Ru(II)-catalyzed C–H allylation of N,N-dialkylthiobenzamides with allyl methyl carbonate. The reaction is carried out using [RuCl2(p-cymene)]2 in the presence of Cu(OAc)2 and Ag2O. This method represents the first example of a Ru-catalyzed C–H allylation directed by a sulfur-containing group. As a further advantage, the method is performed in sustainable and ecofriendly MeCN as the solvent.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2415-3708.
- Supporting Information
Publikationsverlauf
Eingereicht: 06. März 2024
Angenommen nach Revision: 06. Mai 2024
Accepted Manuscript online:
13. September 2024
Artikel online veröffentlicht:
15. Oktober 2024
© 2024. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Lakshman MK, Deb AC, Chamala RR, Pradhan P, Pratap R. Angew. Chem. Int. Ed. 2011; 50: 11400
- 1b Li Z.-K, Jia X.-S, Yin L. Synthesis 2018; 50: 4165
- 1c Rossi R, Lessi M, Manzini C, Bellina F. Adv. Synth. Catal. 2015; 357: 3777
- 2a Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
- 2b Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
- 2c Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
- 2d Sedelmeier G, Sedelmeier J. Chimia 2017; 71: 730
- 3a Wang P.-S, Gong L.-Z. Acc. Chem. Res. 2020; 53: 2841
- 3b Nobile E, Castanheiro T, Besset T. Angew. Chem. Int. Ed. 2021; 60: 12170
- 3c Tsuji J. Pure Appl. Chem. 1999; 71: 1539
- 3d Han JF, Guo P, Zhang X.-G, Liao J.-B, Ye K.-Y. Org. Biomol. Chem. 2020; 18: 7740
- 4a Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
- 4b Zhu R.-Y, Farmer ME, Chen Y.-Q, Yu J.-Q. Angew. Chem. Int. Ed. 2016; 55: 10578
- 5a Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
- 5b Park H, Li Y, Yu J.-Q. Angew. Chem. Int. Ed. 2019; 58: 11424
- 5c He J, Wasa M, Chan KS. L, Shao O, Yu J.-Q. Chem. Rev. 2017; 117: 8754
- 5d Zhang X.-G, Dai H.-X, Wasa M, Yu J.-Q. J. Am. Chem. Soc. 2012; 134: 11948
- 5e Li X, Zhang F, Wu D, Liu Y, Xu G, Peng Y, Liu Z, Huang Y. Tetrahedron 2018; 74: 7364
- 6a Li H.-L, Kanai M, Kuninobu Y. Org. Lett. 2017; 19: 5944
- 6b Rej S, Ano Y, Chatani N. Chem. Rev. 2020; 120: 1788
- 7 Kausar A, Zulfiqar S, Sarwar MI. Polym. Rev. 2014; 54: 185
- 8a Ilardi EA, Vitaku E, Njardarson JT. J. Med. Chem. 2014; 57: 2832
- 8b Beno BR, Yeung KS, Bartberger MD, Pennington LD, Meanwell NA. J. Med. Chem. 2015; 58: 4383
- 8c Liao Y, Wang M, Jiang X. Curr. Opin. Chem. Biol. 2023; 75: 102336
- 9a Saito M, Murakami S, Nanjo T, Kobayashi Y, Takemoto Y. J. Am. Chem. Soc. 2020; 142: 8130
- 9b Verma H, Khatri B, Chakraborti S, Chatterjee J. Chem. Sci. 2018; 9: 2443
- 9c Newberry RW, VanVeller B, Guzei IA, Raines RT. J. Am. Chem. Soc. 2013; 135: 7843
- 9d Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
- 10 Park J, Mishra NK, Sharma S, Han S, Shin Y, Jeong T, Oh JS, Kwak JH, Jung YH, Kim IS. J. Org. Chem. 2015; 80: 1818
- 11 Yu D.-G, Gensch T, de Azambuja F, Vásquez-Céspedes S, Glorius F. J. Am. Chem. Soc. 2014; 136: 17722
- 12 Kim M, Sharma S, Mishra NK, Han S, Park J, Kim M, Shin Y, Kwak JH, Han SH, Kim IS. Chem. Commun. 2014; 50: 11303
- 13 Dutta S, Bhattacharya T, Werz DB, Maiti D. Chem 2021; 7: 555
- 14a Duan Y.-T, Wang Z.-X. J. Org. Chem. 2023; 88: 16076
- 14b Binnani C, Arora S, Priya B, Gupta P, Singh SK. Chem-Asian J. 2023; 18: 11
- 14c Zhang Y.-B, Li B.-S, Xu G.-J, Sun W, Sun M. Org. Lett. 2023; 25: 3922
- 14d Mondal S, Bera R, Chowdhury D, Dana S, Baidya M. Org. Lett. 2023; 25: 70
- 15 Allylation of N,N-Dialkylthiobenzamides; General Procedure A pressure tube was charged with [RuCl2(p-cymene)]2 (10 mol%), Cu(OAc)2 (2.0 equiv), Ag2O (0.5 equiv), K2CO3 (2.0 equiv), the appropriate N,N-dialkylthiobenzamide 1 (0.20 mmol, 1.0 equiv), and allyl methyl carbonate (2; 2.0 equiv). MeCN (1.5 mL) was then added with vigorous stirring at r.t. The tube was placed in an oil bath, and the mixture was stirred for the appropriate time at 100 °C. The mixture was then diluted with EtOAc (20 mL), filtered, and concentrated. The crude product was purified by column chromatography [silica gel, hexanes–EtOAc (10:1)]. 1-[(2-Allylphenyl)carbonothioyl]pyrrolidine (3a) Yellow oil; yield: 77%. 1H NMR (500 MHz, CDCl3): δ = 7.23 (d, J = 11.4 Hz, 3 H), 7.09 (d, J = 7.1 Hz, 1 H), 5.92 (ddd, J = 24.1, 9.0, 7.0 Hz, 1 H), 5.07 (dd, J = 24.7, 13.5 Hz, 2 H), 4.03 (dt, J = 13.8, 6.8 Hz, 1 H), 3.91 (dt, J = 14.2, 7.3 Hz, 1 H), 3.51 (dd, J = 15.2, 8.1 Hz, 1 H), 3.38 (dd, J = 15.2, 5.4 Hz, 1 H), 3.34–3.24 (m, 1 H), 3.26–3.11 (m, 1 H), 2.10–2.01 (m, 2 H), 1.93 (dp, J = 19.8, 6.5 Hz, 2 H). 13C NMR (126 MHz, CDCl3): δ = 196.58, 136.53, 133.84, 129.96, 128.81, 126.65, 124.86, 116.19, 53.03, 52.41, 37.18, 26.19, 24.60. HRMS (ESI): m/z [M + H]+ calcd for C14H18NS: 232.35; found: 232.19.