RSS-Feed abonnieren
DOI: 10.1055/a-2404-2285
Borane-Catalyzed Divergent para and ortho C-Alkylation of Arylamines Using Benzylic Alcohols
Autor*innen
This research was supported by Zhejiang Provincial Natural Science Foundation of China (Grant No. LY23B040001) and Programs Supported by Ningbo Natural Science Foundation (Grant No. 202003N4009).

Abstract
A catalyst-controlled divergent alkylation of diarylamines with benzylic alcohols has been developed. A para C-alkylation of diarylamines could be achieved by using B(C6F5)3 as the catalyst, whereas ortho C-alkylation of diarylamines could be achieved by using HBF4·Et2O as the catalyst. The salient features of this transformation include readily available materials, a broad substrate scope, easily available catalysts, and simple and mild reaction conditions.
Key words
Friedel–Crafts reaction - alkylation - arylamines - benzylic alcohols - divergent synthesis - borane catalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2404-2285.
- Supporting Information (PDF) (opens in new window)
Publikationsverlauf
Eingereicht: 28. Juli 2024
Angenommen nach Revision: 27. August 2024
Accepted Manuscript online:
27. August 2024
Artikel online veröffentlicht:
26. September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Amines: Synthesis, Properties and Applications. Lawrence SA. Cambridge University Press; Cambridge: 2004
- 1b Esezobor OZ, Zeng W, Niederegger L, Grübel M, Hess CR. J. Am. Chem. Soc. 2022; 144: 2994
- 1c Manfredi N, Cecconi B, Abbotto A. Eur. J. Org. Chem. 2014; 7069
- 1d Velusamy M, Shen J.-Y, Lin JT, Lin Y.-C, Hsieh C.-C, Lai C.-H, Lai C.-W, Ho M.-L, Chen Y.-C, Chou P.-T, Hsiao J.-K. Adv. Funct. Mater. 2009; 19: 2388
- 1e Blinova NV, Reynaud S, Roby F, Trchová M, Stejskal J. Synth. Met. 2010; 160: 1598
- 1f Drzyzga O. Chemosphere 2003; 53: 809
- 2 Qin J.-H, Wang Y, Ouyang J.-Y, Liu M, Ouyang X.-H. Org. Chem. Front. 2024; 11: 2638
- 3a Kim MS, Lee Y, Sung G.-H, Kim JH, Park JG, Kim HG, Baek KS, Cho JH, Han J, Lee K.-H, Hong S, Kim J.-H, Cho JY. Biomol. Ther. 2015; 23: 367
- 3b Brown WL, Griffin A, Jin S. WO 2004101522, 2004
- 4 Calloway NO. Chem. Rev. 1935; 17: 327
- 5a Leitch JA, McMullin CL, Paterson AJ, Mahon MF, Bhonoah Y, Frost CG. Angew. Chem. Int. Ed. 2017; 56: 15131
- 5b Jia S, Xing D, Zhang D, Hu W. Angew. Chem. Int. Ed. 2014; 53: 13098
- 6 Evano G, Theunissen C. Angew. Chem. Int. Ed. 2019; 58: 7202
- 7a Kumar R, Van der Eycken EV. Chem. Soc. Rev. 2013; 42: 1121
- 7b Guillena G, Ramón DJ, Yus M. Chem. Rev. 2010; 110: 1611
- 8a Zhu W, Sun Q, Wang Y, Yuan D, Yao Y. Org. Lett. 2018; 20: 3101
- 8b Wang S, Force G, Guillot R, Carpentier J.-F, Sarazin Y, Bour C, Gandon V, Lebœuf D. ACS Catal. 2020; 10: 10794
- 8c Rank CK, Özkaya B, Patureau FW. Org. Lett. 2019; 21: 6830
- 8d Colomer I. ACS Catal. 2020; 10: 6023
- 8e Schroeter F, Lerch S, Kaliner M, Strassner T. Org. Lett. 2018; 20: 6215
- 8f Kaspar LT, Fingerhut B, Ackermann L. Angew. Chem. Int. Ed. 2005; 44: 5972
- 8g Song G, Luo G, Oyamada J, Luo Y, Hou Z. Chem. Sci. 2016; 7: 5265
- 8h Winfrey L, Yun L, Passeri G, Suntharalingam K, Pulis AP. Chem. Eur. J. 2024; 30: e202303130
- 8i Perez M, Mahdi T, Hounjet LJ, Stephan DW. Chem. Commun. 2015; 51: 11301
- 9 Beletskaya IP, Najera C, Yus M. Chem. Soc. Rev. 2020; 49: 7101
- 10a Meng S.-S, Tang X, Luo X, Wu R, Zhao J.-L, Chan AS. C. ACS Catal. 2019; 9: 8397
- 10b Nallagonda R, Rehan M, Ghorai P. J. Org. Chem. 2014; 79: 2934
- 11a Kumar G, Roy S, Chatterjee I. Org. Biomol. Chem. 2021; 19: 1230
- 11b Ma Y, Lou S.-J, Hou Z. Chem. Soc. Rev. 2021; 50: 1945
- 11c Guru MM, Thorve PR, Maji B. J. Org. Chem. 2019; 85: 806