RSS-Feed abonnieren
DOI: 10.1055/a-2352-4835
Iron-Catalyzed Three-Component Asymmetric Carboazidation of Alkenes with Alkanes and Trimethylsilyl Azide
Autor*innen
This work was supported by the National Natural Science Foundation of China (22001177 and 22188101), Shenzhen Bay Laboratory (S201100003 and S211101001-1), Shenzhen Bay Qihang Fellow Program (QH23001), Guangdong Pearl River Talent Program (2021QN020268).

Abstract
The fusion of transition-metal catalysis with radical chemistry provides a versatile platform for the asymmetric radical carboazidation of alkenes to enable the rapid assembly of highly functionalized chiral azide compounds. Here, we present an iron-catalyzed asymmetric three-component radical carboazidation that processes electron-deficient alkenes by direct activation of aliphatic C–H bonds. This strategy provides access to a range of valuable chiral azides from readily available chemical feedstocks bearing a tetrasubstituted carbon stereocenter, and their synthetic potential is further showcased through straightforward transformations to provide other valuable enantioenriched building blocks.
Key words
carboazidation - hydrocarbons - ligands - asymmetric synthesis - radical ligand transfer - trimethylsilyl azidePublikationsverlauf
Eingereicht: 21. Mai 2024
Angenommen nach Revision: 25. Juni 2024
Accepted Manuscript online:
25. Juni 2024
Artikel online veröffentlicht:
17. Juli 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Yi H, Zhang GT, Wang HM, Huang ZY, Wang J, Singh AK, Lei AW. Chem. Rev. 2017; 117: 9016
- 1b Capaldo L, Ravelli D, Fagnoni M. Chem. Rev. 2022; 122: 1875
- 1c Cao H, Kong DG, Yang L.-C, Chanmungkalakul S, Liu T, Piper JL, Peng ZH, Gao LL, Liu XG, Hong X, Wu J. Nat. Synth. 2022; 1: 794
- 2a Zhang W, Wang F, McCann SD, Wang DH, Chen PH, Stahl SS, Liu GS. Science 2016; 353: 1014
- 2b Murphy JJ, Bastida D, Paria S, Fagnoni M, Melchiorre P. Nature 2016; 532: 218
- 2c Yu H, Zhan T, Zhou Y, Chen L, Liu X, Feng X. ACS Catal. 2022; 12: 5136
- 3a Scriven EF. V, Turnbull K. Chem. Rev. 1988; 88: 297
- 3b Brase S, Gil C, Knepper K, Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188
- 4a Ge L, Chiou M.-F, Li Y, Bao H. Green Synth. Catal. 2020; 1: 86
- 4b Sivaguru P, Ning YQ, Bi X. Chem. Rev. 2021; 121: 4253
- 5a Ma X, Chiou M.-F, Ge L, Li X, Li Y, Wu L, Bao H. Chin. J. Catal. 2021; 42: 1634
- 5b Bian K.-J, Nemoto DJr, Kao S.-C, He Y, Li Y, Wang X.-S, West JG. J. Am. Chem. Soc. 2022; 144: 11810
- 6a Ge L, Zhou H, Chiou M.-F, Jiang H, Jian W, Ye C, Li X, Zhu X, Xiong H, Li Y, Song L, Zhang X, Bao H. Nat. Catal. 2020; 4: 28
- 6b Liu W, Pu M, He J, Zhang TH, Dong S, Liu X, Wu Y, Feng X. J. Am. Chem. Soc. 2021; 143: 11856
- 7a Li Y, Lei M, Gong L. Nat. Catal. 2019; 2: 1016
- 7b Jin Y, Fan L.-F, Ng EW. H, Yu L, Hirao H, Gong L.-Z. J. Am. Chem. Soc. 2023; 145: 22031
- 8a Bunescu A, Ha TM, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2017; 56: 10555
- 8b Li W.-Y, Wu C.-S, Wang Z, Luo Y. Chem. Commun. 2018; 54: 11013
- 8c Xu L, Chen J, Chu L. Org. Chem. Front. 2019; 6: 512
- 9 Ge L, Wang H, Liu Y, Feng X. J. Am. Chem. Soc. 2024; 146: 13347
- 10a Liu X, Lin L, Feng X. Acc. Chem. Res. 2011; 44: 574
- 10b Liu X, Lin L, Feng X. Org. Chem. Front. 2014; 1: 298
- 10c Liu X, Zheng H, Xia Y, Lin L, Feng X. Acc. Chem. Res. 2017; 50: 2621
- 10d Liu X, Dong SX, Lin LL, Feng X. Chin. J. Chem. 2018; 36: 791
- 10e Dong S, Liu X, Feng X. Acc. Chem. Res. 2022; 55: 415
- 10f Chen D.-F, Gong L.-Z. Org. Chem. Front. 2023; 10: 3676
- 10g He Y.-M, Cheng Y.-Z, Duan YD, Zhang Y.-D, Fan Q.-H, You S.-L, Luo SZ, Zhu S.-F, Fu X.-F, Zhou Q.-L. CCS Chem. 2023; 5: 2685
- 11a Bian K.-J, Kao S.-C, Nemoto DJr, Chen X.-W, West JG. Nat. Commun. 2022; 13: 7881
- 11b Hooson JF, Tran HN, Bian K.-J, West JG. Chem. Commun. 2024; 60: 3705
For reviews on chiral N,N′-dioxides, see: