Subscribe to RSS
DOI: 10.1055/a-2330-0819
Synthesis of Substituted Cyclooctenes through Cross-Coupling Reactions
This work was supported financially by the Japanese Ministry of Education, Culture, Sports, Science and Technology (JP21H05076, JP23H01953, and JP23K26646). K.A. also acknowledges the Inoue Foundation for Science, the Mizuho Foundation for the Promotion of Sciences, the Japan Association for Chemical Innovation, the Tobe Maki Scholarship Foundation, the NOVARTIS Foundation (Japan) for the Promotion of Science, a Kurata Grants from the Hitachi Global Foundation, the Inamori Foundation, and the Society of Iodine Science. R.M. also acknowledges the Japan Society for the Promotion of Science for Young Scientists for a fellowship support (JP21J23149).

Abstract
Cross-coupling methods for the introduction of various substituents onto the olefin moiety of cyclooctenes were developed. A range of 1-substituted cis-cyclooctenes were synthesized. These protocols unlocked routes to previously inaccessible derivatives, permitting the syntheses of cis-cyclooctenes bearing various functional groups. Moreover, the method was applied to the synthesis of a 1,2-disubstituted trans-cyclooctene for the first time, which proved to be a significantly more active organocatalyst than the previously developed monosubstituted trans-cyclooctene.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2330-0819.
- Supporting Information
Publication History
Received: 18 April 2024
Accepted after revision: 18 May 2024
Accepted Manuscript online:
18 May 2024
Article published online:
03 June 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 The Chemistry of Double-Bonded Functional Groups, Vol. 2. Patai S. Wiley; Chichester: 1989
- 2a Defieber C, Grützmacher H, Carreira EM. Angew. Chem. Int. Ed. 2008; 47: 4482
- 2b Shintani R, Hayashi T. Aldrichimica Acta 2009; 42: 31
- 2c Feng X, Du H. Asian J. Org. Chem. 2012; 1: 204
- 2d Nagamoto M, Nishimura T. ACS Catal. 2017; 7: 833
- 3 Blomquist AT, Liu LH, Bohrer JC. J. Am. Chem. Soc. 1952; 74: 3643
- 4a Marshall JA. Acc. Chem. Res. 1980; 13: 213
- 4b Nakazaki M, Yamamoto K, Naemura K. Top. Curr. Chem. 1984; 125: 1
- 4c Schlögl K. Top. Curr. Chem. 1984; 125: 27
- 4d Eliel EL, Wilen SH, Mander LN. Stereochemistry of Organic Compounds . Wiley; New York: 1993: 1172
- 5a Cope AC, Howell CF, Knowles A. J. Am. Chem. Soc. 1962; 84: 3190
- 5b Cope AC, Ganellin CR, Johnson HW. Jr. J. Am. Chem. Soc. 1962; 84: 3191
- 5c Cope AC, Ganellin CR, Johnson HW. Jr, Van Auken TV, Winkler HJ. S. J. Am. Chem. Soc. 1963; 85: 3276
- 5d Cope AC, Mehta AS. J. Am. Chem. Soc. 1964; 86: 5626
- 5e Cope AC, Banholzer K, Keller H, Pawson BA, Whang JJ, Winkler HJ. S. J. Am. Chem. Soc. 1965; 87: 3644
- 5f Cope AC, Pawson BA. J. Am. Chem. Soc. 1965; 87: 3649
- 5g Inoue Y, Yokoyama T, Yamasaki N, Tai A. Nature 1989; 341: 225
- 5h Tomooka K, Uehara K, Nishikawa R, Suzuki M, Igawa K. J. Am. Chem. Soc. 2010; 132: 9232
- 5i Igawa K, Ichikawa N, Ano Y, Katanoda K, Ito M, Akiyama T, Tomooka K. J. Am. Chem. Soc. 2015; 137: 7294
- 5j Miura T, Nakamuro T, Liang C.-J, Murakami M. J. Am. Chem. Soc. 2014; 136: 15905
- 5k Okayama Y, Tsuji S, Toyomori Y, Mori A, Arae S, Wu W.-Y, Takahashi T, Ogasawara M. Angew. Chem. Int. Ed. 2015; 54: 4927
- 6a Tomooka K, Komine N, Fujiki D, Nakai T, Yanagitsuru S.-i. J. Am. Chem. Soc. 2005; 127: 12182
- 6b Tomooka K, Suzuki M, Uehara K, Shimada M, Akiyama T. Synlett 2008; 2518
- 6c Tomooka K, Akiyama T, Man P, Suzuki M. Tetrahedron Lett. 2008; 49: 6327
- 6d Tomooka K, Iso C, Uehara K, Suzuki M, Nishikawa-Shimono R, Igawa K. Angew. Chem. Int. Ed. 2012; 51: 10355
- 6e Larionov OV, Corey EJ. J. Am. Chem. Soc. 2008; 130: 2954
- 6f Royzen M, Yap GP. A, Fox JM. J. Am. Chem. Soc. 2008; 130: 3760
- 6g Hurlocker B, Hu C, Woerpel KA. Angew. Chem. Int. Ed. 2015; 54: 4295
- 7a Thalhammer F, Wallfahrer U, Sauer J. Tetrahedron Lett. 1990; 31: 6851
- 7b Blackman ML, Royzen M, Fox JM. J. Am. Chem. Soc. 2008; 130: 13518
- 7c Devaraj NK, Weissleder R. Acc. Chem. Res. 2011; 44: 816
- 7d Liu F, Liang Y, Houk KN. J. Am. Chem. Soc. 2014; 136: 11483
- 7e Kamber DN, Liang Y, Blizzard RJ, Liu F, Mehl RA, Houk KN, Prescher JA. J. Am. Chem. Soc. 2015; 137: 8388
- 8a Einaru S, Shitamichi K, Nagano T, Matsumoto A, Asano K, Matsubara S. Angew. Chem. Int. Ed. 2018; 57: 13863
- 8b Nagano T, Einaru S, Shitamichi K, Asano K, Matsubara S. Eur. J. Org. Chem. 2020; 7131
- 9 Murata R, Shitamichi K, Hiramatsu M, Matsubara S, Uraguchi D, Asano K. Chem. Eur. J. 2024; 30: e202303399
- 10a Vedejs E, Snoble KA. J, Fuchs PL. J. Org. Chem. 1973; 38: 1178
- 10b Shea KJ, Kim J.-S. J. Am. Chem. Soc. 1992; 114: 3044
- 11 von R Schleyer P, Williams JE, Blanchard KR. J. Am. Chem. Soc. 1970; 92: 2377
- 12a Metal Catalyzed Cross-Coupling Reactions and More . de Meijere A, Bräse S, Oestreich M. Wiley-VCH; Weinheim: 2013
- 12b Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
- 13 Tamao K, Sumitani K, Kiso Y, Zembayashi M, Fujioka A, Kodama S.-i, Nakajima I, Minato A, Kumada M. Bull. Chem. Soc. Jpn. 1976; 49: 1958
- 14 Negishi E. Acc. Chem. Res. 1982; 15: 340
- 15 Terao J, Watanabe H, Ikumi A, Kuniyasu H, Kambe N. J. Am. Chem. Soc. 2002; 124: 4222
- 16 The synthesis of a monobrominated TCO failed, and its cross-coupling could not be investigated.
- 17 All of 9 was converted to provide several products, although the byproducts were not identified. The stability of 10a was sufficient for its isolation.
- 18 Nickel-Catalyzed Cross-Coupling; General Procedure 1-Bromocyclooctene (6) or 1,2-dibromocyclooctene (9; 0.50 mmol), the appropriate solvent (0.12 M), and NiCl2(dppe) (13 mg, 0.025 mmol) were added sequentially to a flame-dried 10-mL test tube with a rubber septum under an argon atmosphere. The mixture was cooled to the reaction temperature and stirred for 10 min, and then the organomagnesium reagent 11 (0.75 or 1.3 mmol) was added over 10 min. The mixture was gradually warmed and stirred for the appropriate time. The reaction was then quenched with sat. aq NH4Cl (2.0 mL). The resulting mixture was stirred at ambient temperature for 10 min, and then EtOAc (5.0 mL) and H2O (5.0 mL) were added. The aqueous layer was extracted with EtOAc (3 × 10 mL), and the combined organic layers were dried (Na2SO4) and concentrated in vacuo. Purification of the crude product by flash column chromatography (silica gel, hexane) afforded the corresponding product 2 or 10a. Further purification by preparative recycling chromatography was conducted if necessary. (E)-1-Benzylcyclooctene (2a) [CAS Reg. No. 1870003-16-9] Colorless oil; yield: 90 mg (90%); TLC: Rf = 0.75 (hexane). 1H NMR (600 MHz, CDCl3): δ = 7.29–7.26 (m, 3 H), 7.19 (m, 2 H), 5.38 (t, J = 8.1 Hz, 1 H), 3.30 (s, 2 H), 2.12–2.09 (m, 4 H), 1.49–1.39 (m, 8 H). 13C NMR (150 MHz, CDCl3): δ = 140.4, 140.1, 129.2, 128.1, 125.84, 125.82, 44.0, 30.0, 28.5, 28.4, 26.5, 26.4, 26.3. (E)-1,2-Dibenzylcyclooctene (10a) Colorless oil; yield: 1.3 mg (5%); TLC: Rf = 0.75 (hexane). IR (neat): 2922, 1466, 750, 727, 694 cm–1. 1H NMR (600 MHz, CDCl3): δ = 7.27–7.25 (m, 4 H), 7.19–7.18 (m, 6 H), 3.58 (s, 4 H), 2.19 (m, 4 H), 1.44–1.36 (m, 8 H). 13C NMR (150 MHz, CDCl3): δ = 140.9, 133.5, 128.9, 128.2, 125.8, 38.4, 30.6, 29.2, 26.6. HRMS (EI); m/z [M+] calcd for C22H26: 290.20290; found: 290.20318.
For selected reviews, see:
For reviews, see:
For isolation of optically active forms, see:
For selected examples of enantioselective syntheses, see:
For selected examples of the use as chiral synthetic intermediates, see:
For selected examples, see: