Synlett
DOI: 10.1055/a-2322-0816
letter

Electrochemical Nitro Reduction to Amines Using Pinacolborane as Reducing Agent

a   School of Pharmaceutical Engineering, Jiangsu Food & Pharmaceutical Science College, Huai’an, Jiangsu, 223003, P. R. of China
b   School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. of China
,
Zhengjia Shen
a   School of Pharmaceutical Engineering, Jiangsu Food & Pharmaceutical Science College, Huai’an, Jiangsu, 223003, P. R. of China
› Institutsangaben
We are grateful for the financial support from the scientific research start-up funds of Jiangsu Food & Pharmaceutical Science College, No.4 Meicheng Road, Huai’an Higher Education Park, Jiangsu Province.


Abstract

Nitroaromatic compounds, as hazardous industrial pollutants, have long been extensively studied for their conversion into high-value aromatic amines. However, most of these transformation reactions require either transition-metal catalysts or high-temperature conditions. Therefore, we report an electrochemical approach utilizing pinacolborane as the reducing agent for the efficient reduction of nitroaromatic compounds. The reaction is characterized by its mild conditions and simplicity of operation, and it demonstrates excellent substrate adaptability and functional group compatibility.

Supporting Information



Publikationsverlauf

Eingereicht: 03. April 2024

Angenommen nach Revision: 07. Mai 2024

Accepted Manuscript online:
08. Mai 2024

Artikel online veröffentlicht:
27. Mai 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Jeschke P, Lösel P, Hellwege E, Dietz M, Herrmann S, Gutbrod O. J. Agric. Food Chem. 2022; 70: 11097
    • 1b Dent WH. III, Pobanz MA, Geng C, Sparks TC, Watson GB, Letherer TJ, Beavers KW, Young CD, Adelfinskaya YA, Ross RR, Whiteker G, Renga J. Pest Manag. Sci. 2017; 73: 774
    • 1c Zhao Q, Sun R, Liu Y, Chen P, Li Y, Yang S, Wang Q. Bioorg. Med. Chem. 2019; 27: 115092
    • 2a Canale V, Czekajewska J, Klesiewicz K, Papież M, Kuziak A, Witek K, Piska K, Niemiec D, Kasza P, Pękala E, Empel J, Tomczak M, Karczewska E, Zajdel P. Eur. J. Med. Chem. 2023; 251: 115224
    • 2b Cheng Y.-N, Jiang Z.-H, Sun L.-S, Su Z.-Y, Zhang M.-M, Li H.-L. Eur. J. Med. Chem. 2020; 200: 112463
    • 2c Zhang C, Crawford JJ, Landry ML, Chen H, Kenny JR, Khojasteh SC, Lee W, Ma S, Young WB. Chem. Res. Toxicol. 2020; 33: 1950
  • 3 Badart MP, Hawkins BC. Synthesis 2021; 53: 1683
    • 4a Afanasyev OI, Kuchuk E, Usanov DL, Chusov D. Chem. Rev. 2019; 119: 11857
    • 4b Brown DG, Boström J. J. Med. Chem. 2016; 59: 4443
    • 5a Xia X, Liu S, Liu W, Xu Q, Xu X, Liu F, Deng T. Org. Biomol. Chem. 2022; 20: 9234
    • 5b Wang J, Liu K, Ma L, Zhan X. Chem. Rev. 2016; 116: 14675
    • 5c Liang M, Chen J. Chem. Soc. Rev. 2013; 42: 3453
  • 6 Ćorković A, Chiarella T, Williams FJ. Org. Lett. 2023; 25: 8787
    • 7a Kadoya WM, Sierra-Alvarez R, Wong S, Abrell L, Mash EA, Field JA. Chemosphere 2018; 195: 372
    • 7b Zhang C.-L, Yu Y.-Y, Fang Z, Naraginti S, Zhang Y, Yong Y.-C. Process Biochem. 2018; 70: 129
    • 8a Ramdar M, Kazemi F, Kaboudin B. Chem. Pap. 2017; 71: 1155
    • 8b Penning TM, Su AL, El-Bayoumy K. Chem. Res. Toxicol. 2022; 35: 1747
    • 8c de Loera D, Leyva E, Moctezuma E. Curr. Org. Chem. 2018; 22: 1475
    • 8d Vengatesh G, Nanjan P. Curr. Org. Chem. 2022; 26: 1626
    • 8e Roldán MD, Pérez-Reinado E, Castillo F, Moreno-Vivián C. FEMS Microbiol. Rev. 2008; 32: 474
    • 8f Aggarwal V, Bala E, Saima S, Pathan S, Guleria S, Sharma S, Selvaraj M, Verma PK. Synlett 2023; 35: 245
  • 9 Liu X, Ma X, Liu S, Liu Y, Xia C. RSC Adv. 2015; 5: 36423
    • 10a Yang S, He M, Wang Y, Bao M, Yu X. Chem. Commun. 2023; 59: 14177
    • 10b Zhu K, Shaver MP, Thomas SP. Chem. Sci. 2016; 7: 3031
    • 11a Huber D, Andermann G, Leclerc G. Tetrahedron Lett. 1988; 29: 635
    • 11b Cope OJ, Brown RK. Can. J. Chem. 1961; 39: 1695
    • 12a Brinkman HR, Miles WH, Hilborn MD, Smith MC. Synth. Commun. 1996; 26: 973
    • 12b Rahaim RJ, Maleczka RE. Org. Lett. 2005; 7: 5087
    • 12c Junge K, Wendt B, Shaikh N, Beller M. Chem. Commun. 2010; 46: 1769
    • 12d Sun S, Quan Z, Wang X. RSC Adv. 2015; 5: 84574
    • 12e Shen M, Bendel C, Vibbert HB, Khine PT, Norton JR, Moment AJ. Green Chem. 2023; 25: 7183
    • 12f Capperucci A, Clemente M, Cenni A, Tanini D. ChemSusChem 2023; 16: e202300086
    • 13a Lu H, Geng Z, Li J, Zou D, Wu Y, Wu Y. Org. Lett. 2016; 18: 2774
    • 13b Chen D, Zhou Y, Zhou H, Liu S, Liu Q, Zhang K, Uozumi Y. Synlett 2018; 29: 1765
    • 13c Du H.-C, Simmons N, Faver JC, Yu Z, Palaniappan M, Riehle K, Matzuk MM. Org. Lett. 2019; 21: 2194
    • 13d Hosoya H, Misal Castro LC, Sultan I, Nakajima Y, Ohmura T, Sato K, Tsurugi H, Suginome M, Mashima K. Org. Lett. 2019; 21: 9812
    • 13e Jang M, Lim T, Park BY, Han MS. J. Org. Chem. 2022; 87: 910
  • 14 Cosgrove SC, Miller GJ, Bornadel A, Dominguez B. ACS Sustainable Chem. Eng. 2023; 11: 8556
    • 15a Zhu C, Ang NW. J, Meyer TH, Qiu Y. ACS Cent. Sci. 2021; 7: 415
    • 15b Lam K. Synlett 2022; 33: 1953
    • 15c Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 15d Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Chem. Rev. 2022; 122: 3180
    • 15e Huang B, Sun Z, Sun G. eScience 2022; 2: 243
    • 16a Huang B, Li Y, Yang C, Xia W. Chem. Commun. 2019; 55: 6731
    • 16b Zhang T.-S, Hao W.-J, Wang R, Wang S.-C, Tu S.-J, Jiang B. Green Chem. 2020; 22: 4259
    • 16c Huang B, Guo L, Xia W. Green Chem. 2021; 23: 2095
    • 16d Ji X.-S, Zuo H.-D, Shen Y.-T, Hao W.-J, Tu S.-J, Jiang B. Chem. Commun. 2022; 58: 10420
    • 16e Huang B, Chen G, Zhang H, Tang X, Yuan J, Lu C, Wang J. Org. Chem. Front. 2023; 10: 3515
    • 16f Zhang M, Luo Z, Tang X, Yu L, Pei J, Wang J, Lu C, Huang B. Org. Biomol. Chem. 2023; 21: 8918
    • 17a Lipshultz JM, Fu Y, Liu P, Radosevich AT. Chem. Sci. 2021; 12: 1031
    • 17b Wang X, Cui P, Xia C, Wu L. Angew. Chem. Int. Ed. 2021; 60: 12298
    • 17c Bismuto A, Cowley MJ, Thomas SP. ACS Catal. 2018; 8: 2001
    • 17d Bismuto A, Thomas SP, Cowley MJ. Angew. Chem. Int. Ed. 2016; 55: 15356
    • 18a Lei S, Pan T, Wang M, Zhang Y. Tetrahedron Lett. 2022; 102: 153949
    • 18b Aoyagi K, Matsumoto K, Shimada S, Sato K, Nakajima Y. Organometallics 2019; 38: 210
    • 18c Barger CJ, Dicken RD, Weidner VL, Motta A, Lohr TL, Marks TJ. J. Am. Chem. Soc. 2020; 142: 8019
    • 18d Chen C, Lu C, Zhao B. J. Org. Chem. 2023; 88: 16391
    • 18e Pandey VK, Bauri S, Rit A. Org. Biomol. Chem. 2020; 18: 3853
    • 18f Nicholson K, Dunne J, DaBell P, Garcia AB, Bage AD, Docherty JH, Hunt TA, Langer T, Thomas SP. ACS Catal. 2021; 11: 2034
    • 18g Zhang J, Chen Z, Chen M, Zhou Q, Zhou R, Wang W, Shao Y, Zhang F. J. Org. Chem. 2024; 89: 887
  • 19 Zhao L, Hu C, Cong X, Deng G, Liu LL, Luo M, Zeng X. J Am. Chem. Soc. 2021; 143: 1618
  • 20 Shen Z.-J, Zhu C, Zhang X, Yang C, Rueping M, Guo L, Xia W. Angew. Chem. Int. Ed. 2023; 62: e202217244
    • 21a Chen C, Lu C, Zhao B. J. Org. Chem. 2023; 88: 16391
    • 21b Gudun KA, Zakarina R, Segizbayev M, Hayrapetyan D, Slamova A, Khalimon AY. Adv. Synth. Catal. 2022; 364: 601
    • 21c Zhang F, Gong M, Xie H, Luo Y. New J. Chem. 2021; 45: 17654
    • 21d Wang Y, Cao X, Zhao L, Pi C, Ji J, Cui X, Wu Y. Adv. Synth. Catal. 2020; 362: 4119
    • 21e Barger CJ, Dicken RD, Weidner VL, Motta A, Lohr TL, Marks TJ. J. Am. Chem. Soc. 2020; 142: 8019
    • 21f Lampland NL, Hovey M, Mukherjee D, Sadow AD. ACS Catal. 2015; 5: 4219
    • 22a Wirtanen T, Rodrigo E, Waldvogel SR. Adv. Synth. Catal. 2020; 362: 2088
    • 22b Rauser M, Ascheberg C, Niggemann M. Angew. Chem. Int. Ed. 2017; 56: 11570
    • 22c Wang Q, Xu J, Xu Z, Wang Z, Tao X, Ni S, Pan Y, Wang Y. Green Chem. 2023; 25: 7084
    • 22d Li G, Nykaza TV, Cooper JC, Ramirez A, Luzung MR, Radosevich AT. J. Am. Chem. Soc. 2020; 142: 6786