Synlett
DOI: 10.1055/a-2316-5066
letter
Special Issue to Celebrate the 75th Birthday of Prof. B. C. Ranu

Metal-Free Synthesis of C-3-Alkoxycarbonylated 2H-Indazoles Using Alkyl Carbazates

Dipti Lai
a   Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
b   Integrated Science Education & Research Centre, Visva-Bharati (A Central University), Santiniketan 731235, West Bengal, India
,
Suvam Bhattacharjee
a   Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
,
Sumit Ghosh
a   Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
b   Integrated Science Education & Research Centre, Visva-Bharati (A Central University), Santiniketan 731235, West Bengal, India
,
Subrata Sinha
b   Integrated Science Education & Research Centre, Visva-Bharati (A Central University), Santiniketan 731235, West Bengal, India
,
Alakananda Hajra
a   Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
› Author Affiliations
A.H. acknowledges the financial support from the Council of Scientific and Industrial Research (CSIR), New Delhi (Grant no. 02(0455)/21/EMR-II). D.L. and S.B. thank the Council of Scientific and Industrial Research (CSIR), New Delhi (CSIR-SRF) for their fellowship.


This paper is dedicated to Professor Brindaban C. Ranu on the occasion of his 75th birthday.

Abstract

A simple, efficient, and environmentally benign method for the direct C-3-alkoxycarbonylation of 2H-indazoles using alkyl carbazates has been developed under metal-free conditions at room temperature. This current protocol represents a facile access to C-3-carboxylic ester derived 2H-indazoles with wide functional group tolerance in good to excellent yields. The mechanistic studies suggest that the reaction proceeds through a radical pathway.

Supporting Information



Publication History

Received: 23 March 2024

Accepted after revision: 29 April 2024

Accepted Manuscript online:
29 April 2024

Article published online:
16 May 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Zhao Y, Li Y, Ou X, Zhang P, Huang Z, Bi F, Huang R, Wang Q. J. Agric. Food Chem. 2008; 56: 10176
    • 1b Szűts A, Szabó-Révész P. Int. J. Pharm. 2012; 433: 1
    • 1c Ortega-Requena S, Montiel C, Máximo F, Gómez M, Murcia MD, Bastida J. Materials 2024; 17: 268
    • 2a Levin JI, Turos E, Weinreb SM. Synth. Commun. 1982; 12: 989
    • 2b Zhang J, Leitus G, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2006; 45: 1113
    • 2c Shi Y, Liu X, Cao H, Bie F, Han Y, Yan P, Szostak R, Szostak M, Liu C. Org. Biomol. Chem. 2021; 19: 2991
  • 3 Pimparkar S, Dalvi AK, Koodan A, Maiti S, Al-Thabaiti SA, Mokhtar M, Dutta A, Lee YR, Maiti D. Green Chem. 2021; 23: 9283
  • 4 Schoenberg A, Bartoletti I, Heck RF. J. Org. Chem. 1974; 39: 3318
    • 5a Munday RH, Martinelli JR, Buchwald SL. J. Am. Chem. Soc. 2008; 130: 2754
    • 5b Brennfuhrer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
    • 5c Ueda T, Konishi H, Manabe K. Org. Lett. 2012; 14: 3100
    • 6a Godard C, Muñoz BK, Ruiz A, Claver C. Dalton Trans. 2008; 853
    • 6b Brennführer A, Neumann H, Beller M. ChemCatChem 2009; 1: 28
    • 6c Liu Q, Zhang H, Lei A. Angew. Chem. Int. Ed. 2011; 50: 10788
    • 6d Kalck P, Urrutigoïty M. Inorg. Chim. Acta 2015; 431: 110
    • 7a Taniguchi T, Sugiura Y, Zaimoku H, Ishibashi H. Angew. Chem. Int. Ed. 2010; 49: 10154
    • 7b Su YH, Wu Z, Tian SK. Chem. Commun. 2013; 49: 6528
    • 7c Ding R, Zhang QC, Xu YH, Loh TP. Chem. Commun. 2014; 50: 11661
    • 7d Wang G, Wang S, Wang J, Chen SY, Yu XQ. Tetrahedron 2014; 70: 3466
    • 8a Gao Y, Lu W, Liu P, Sun P. J. Org. Chem. 2016; 81: 2482
    • 8b Li C.-K, Zhang D.-L, Olamiji OO, Zhang P.-Z, Shoberu A, Zou J.-P, Zhang W. Synthesis 2018; 50: 2968
    • 8c Li X, Fang M, Hu P, Hong G, Tang Y, Xu X. Adv. Synth. Catal. 2014; 356: 2103
    • 8d Xie L.-Y, Peng S, Fan T.-G, Liu Y.-F, Sun M, Jiang L.-L, Wang X.-X, Cao Z, He W. Sci. China: Chem. 2019; 62: 460
    • 8e Sarothiya D, Bhawale RT, Kshirsagar UA. J. Org. Chem. 2022; 87: 14915
    • 9a Lee F.-Y, Lien J.-C, Huang L.-J, Huang T.-M, Tsai S.-C, Teng C.-M, Wu C.-C, Cheng F.-C, Kuo S.-C. J. Med. Chem. 2001; 44: 3746
    • 9b Haddadin MJ, Conrad WE, Kurth MJ. Mini-Rev. Med. Chem. 2012; 12: 1293
    • 9c Zhang S.-G, Liang C.-G, Zhang W.-H. Molecules 2018; 23: 2783
    • 9d Rodríguez-Villar K, Yépez-Mulia L, Cortés-Gines M, Aguilera-Perdomo JD, Quintana-Salazar EA, Olascoaga Del Angel KS, Cortés-Benítez F, Palacios-Espinosa JF, Soria-Arteche O, Pérez-Villanueva J. Molecules 2021; 26: 2145
    • 10a Jia Y, Zhang J, Feng J, Xu F, Pan H, Xu W. Chem. Biol. Drug Des. 2014; 83: 306
    • 10b Cerecetto H, Gerpe A, González M, Arán VJ, De Ocáriz CO. Mini-Rev. Med. Chem. 2005; 5: 869
    • 11a Murugan A, Gorantla KR, Mallik BS, Sharada DS. Org. Biomol. Chem. 2018; 16: 5113
    • 11b Mahanty K, Maiti D, De Sarkar S. J. Org. Chem. 2020; 85: 3699
    • 11c Liu L, Jiang P, Liu Y, Du H, Tan J. Org. Chem. Front. 2020; 7: 2278
    • 11d Kim W, Kim HY, Oh K. Org. Lett. 2020; 22: 6319
    • 11e Sun M, Li L, Wang L, Huo J, Sun M, Li P. Org. Chem. Front. 2021; 8: 4230
    • 11f Laru S, Bhattacharjee S, Hajra A. Chem. Commun. 2022; 58: 13604
    • 11g Ma C.-H, Zhao L, He X, Jiang Y.-Q, Yu B. Org. Chem. Front. 2022; 9: 1445
    • 11h Yang Z, Yu J.-T, Pan C. Org. Biomol. Chem. 2022; 20: 7746
    • 12a Neogi S, Ghosh AK, Majhi K, Samanta S, Kibriya G, Hajra A. Org. Lett. 2020; 22: 5605
    • 12b Bhattacharjee S, Laru S, Ghosh P, Hajra A. J. Org. Chem. 2021; 86: 10866
    • 12c Ghosh P, Hajra A. J. Org. Chem. 2021; 86: 10883
    • 12d Das KK, Hajra A. Org. Biomol. Chem. 2024; 22: 1034
    • 13a Theodorou V, Skobridis K, Tzakosb AG, Ragoussis V. Tetrahedron Lett. 2007; 48: 8230
    • 13b Bhattacharjee S, Hajra A. Org. Lett. 2023; 25: 4183
    • 14a Guo S, Lu L, Cai H. Synlett 2013; 24: 1712
    • 14b Xu X, Tang Y, Li X, Hong G, Fang M, Du X. J. Org. Chem. 2014; 79: 446
    • 14c Pan C, Han J, Zhang H, Zhu C. J. Org. Chem. 2014; 79: 5374
    • 14d Zong Z, Lu S, Wang W, Li Z. Tetrahedron Lett. 2015; 56: 6719
    • 14e Wang S.-N, Zhang G.-Y, Shoberu A, Zou J.-P. J. Org. Chem. 2021; 86: 9067
  • 15 General Experimental Procedure for the Synthesis of C-3-Alkoxycarbonylated 2H-Indazoles 3 and 5 A mixture of 2-arylindazoles 1/4 (0.2 mmol), alkyl hydrazinecarboxylate 2 (2.0 equiv), and TBHP (4.0 equiv, 0.14 mL) was taken in an oven-dried reaction tube under N2 atmosphere. Then 1,2-DCE (2 mL) was added to it using a syringe, and the reaction mixture was further stirred at room temperature for 8 h under N2 atmosphere. After completion of the reaction (TLC), the reaction mixture was extracted with DCM (10 mL). The organic phase was dried over anhydrous Na2SO4 and concentrated under reduced pressure to get the crude residue which was purified by column chromatography on silica gel (100–200 mesh) using a mixture of petroleum ether and ethyl acetate as an eluent to afford the corresponding products 3/5. Analytical Data for Compound 3ha White solid (67%, 42.9 mg); Rf = 0.50 (PE:EtOAc = 96:4); mp 155–156 °C. 1H NMR (400 MHz, CDCl3): δ = 8.10 (d, J = 8.4 Hz, 1 H), 7.85 (d, J = 8.4 Hz, 1 H), 7.80 (d, J = 8.4 Hz, 2 H), 7.68 (d, J = 8.0 Hz, 2 H), 7.46–7.42 (m, 1 H), 7.39–7.35 (m, 1 H), 3.94 (s, 3 H). 13C{1H} NMR (100 MHz, CDCl3): δ = 160.0, 148.9, 143.6, 131.6, 131.3, 127.7, 127.0, 126.2, 125.9 (q, J C–F = 4.0 Hz), 124.2, 123.8 (q, J C–F = 271.0 Hz), 121.6, 118.8, 52.3. FTIR: ν = 3055, 1708, 1616, 1462, 1296, 1103 cm–1. HRMS (ESI-TOF): m/z [M + H]+ calcd for [C16H12F3N2O2]+: 321.0845; found: 321.0841. Analytical Data for Compound 5aa White solid (77%, 45.6 mg); Rf = 0.5 (PE:EtOAc = 94 : 6); mp 134–135 °C. 1H NMR (400 MHz, CDCl3): δ = 7.72 (d, J = 9.2 Hz, 1 H), 7.39–7.37 (m, 2 H), 7.31–7.29 (m, 3 H), 7.10–7.07 (m, 1 H), 3.92 (s, 3 H), 3.89 (s, 3 H), 2.45 (s, 3 H). 13C{1H} NMR (100 MHz, CDCl3): δ = 160.3, 158.1, 145.2, 139.3, 138.7, 129.3, 126.0, 125.0, 123.9, 122.0, 120.1, 97.9, 55.6, 51.9, 21.4. FTIR: ν = 3032, 1712, 1631, 1442, 1211, 1126 cm–1. HRMS (ESI-TOF): m/z [M + H]+ calcd for [C17H17N2O3]+: 297.1234; found: 297.1225.