Synlett
DOI: 10.1055/a-2315-8320
letter

Visible-Light-Driven Metal-Free and Photocatalyst-Free Intra­molecular Cyclization of Chalcones to Access Phenanthrenes

Miaoyan Yi
a   School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. of China
b   State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China
,
Chen Zhang
a   School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. of China
,
Saihu Liao
b   State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China
,
Bing Sun
a   School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. of China
› Institutsangaben
We thank Wuhan University of Technology for financial support.


Abstract

We report a visible-light-driven metal-free and photocatalyst-free protocol for the synthesis of phenanthrenes through the intramolecular cyclization of chalcones. The transformation proceeds through light irradiation and base- and oxygen-based promotion, and enables the generation of a series of phenanthrenes. The further functionalization of an as-synthesized phenanthrene to afford a fluorescent molecule was explored.

Supporting Information



Publikationsverlauf

Eingereicht: 02. April 2024

Angenommen nach Revision: 27. April 2024

Accepted Manuscript online:
27. April 2024

Artikel online veröffentlicht:
05. Juni 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Kotha S, Misra S, Halder S. Tetrahedron 2008; 64: 10775
    • 1b van Otterlo WA. L, De Koning CB. Chem. Rev. 2009; 109: 3743
    • 1c Tóth B, Hohmann J, Vasas A. J. Nat. Prod. 2018; 81: 661
    • 1d Singh SB. Nat. Prod. Rep. 2024; 41: 298
    • 2a Jeandet P, Douillet-Breuil A.-C, Bessis R, Debord S, Sbaghi M, Adrian M. J. Agric. Food Chem. 2002; 50: 2731
    • 2b Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M, Salam AM. Samarakoon T, Shabih S, Farrokhi DR, Quave CL. Chem. Rev. 2021; 121: 3495
    • 2c Zhang P, Zhang X, Zhu X, Hua Y. J. Agric. Food Chem. 2023; 71: 14870
  • 3 Zhen Y.-Y, Huang X.-S, Yu D.-Q, Yu S.-S. Acta Bot. Sin. 2002; 44: 349
  • 4 Ge Y.-W, Zhu S, Shang M.-Y, Zang X.-Y, Wang X, Bai Y.-J, Li L, Komatsu K, Cai S.-Q. Phytochemistry 2013; 86: 201
  • 5 Stefkó D, Kúsz N, Csorba A, Jakab G, Bérdi P, Zupkó I, Hohmann J, Vasas A. Tetrahedron 2019; 75: 116
  • 6 Chia Y.-C, Chang F.-R, Teng C.-M, Wu Y.-C. J. Nat. Prod. 2000; 63: 1160
  • 7 Luong TM, Pilkington LI, Barker D. J. Org. Chem. 2019; 84: 5747
  • 8 Ti H, Zhuang Z, Li Y, Wei G, Wang F. Nat. Prod. Res. 2022; 36: 2056
    • 9a Ghosh P, Das J, Basak A, Kanti Mukhopadhyay S, Banerjee P. ChemistrySelect 2020; 5: 8722
    • 9b Gupta V, Sirohi P, Singh N, Singh RP. New J. Chem. 2020; 44: 17714
    • 9c Ou Y, Sun A, Li H, Wu T, Zhang D, Xu P, Zhao R, Zhu L, Wang R, Xu B, Hua Y, Ding L. Mater. Chem. Front. 2021; 5: 876
    • 9d Jiang H, Wu Y, Islam A, Wu M, Zhang W, Shen C, Zhang H, Li E, Tian H, Zhu W.-H. ACS Appl. Mater. Interfaces 2018; 10: 13635
    • 10a Fu WC, Wang Z, Chan WT. K, Lin Z, Kwong FY. Angew. Chem. Int. Ed. 2017; 56: 7166
    • 10b Song J, Wang S, Sun H, Fan Y, Xiao K, Qian Y. Org. Biomol. Chem. 2019; 17: 3328
    • 10c Yao L, Fang B, Hu Q, Lei Y, Bao L, Hu Y. Chem. Commun. 2020; 56: 15185
    • 11a Murai M, Hosokawa N, Roy D, Takai K. Org. Lett. 2014; 16: 4134
    • 11b Matsuda T, Nishida Y, Yamanaka K, Sakurai Y. Tetrahedron 2015; 71: 869
    • 11c Bera K, Sarkar S, Jana U. Tetrahedron Lett. 2015; 56: 312
    • 11d Chen K.-H, Chiang Y.-J, Zhu J.-L. Org. Biomol. Chem. 2018; 16: 8353
    • 12a Xiao T, Dong X, Tang Y, Zhou L. Adv. Synth. Catal. 2012; 354: 3195
    • 12b Chatterjee T, Lee DS, Cho EJ. J. Org. Chem. 2017; 82: 4369
  • 13 Nagode SB, Kant R, Rastogi N. Eur. J. Org. Chem. 2018; 2018: 1533
  • 14 Guo J.-D, Yang X.-L, Chen B, Tung C.-H, Wu L.-Z. Org. Lett. 2020; 22: 9627
  • 15 Thangthong A, Prachumrak N, Sudyoadsuk T, Namuangruk S, Keawin T, Jungsuttiwong S, Kungwan N, Promarak V. Org. Electron. 2015; 21: 117
  • 17 (2-Chlorophenyl)(9-phenanthryl)methanone (2a); Typical Procedure An unsealed vessel equipped with a magnetic stirrer bar was charged sequentially with substrate 1a (318.0 mg, 0.2 mmol, 1.0 equiv), PhCl (2 mL), and DBU (76.1 mg, 0.5 mmol, 2.0 equiv). The vessel was then irradiated by 40 W purple LEDs at 25 °C for 8 h until the reaction was complete (TLC). CH2Cl2 was then added to fully dissolve the product, and the mixture was extracted with H2O. The organic phase was collected, mixed with silica powder, and dried in vacuo. The crude product was further purified by flash column chromatography [silica gel, PE–EtOAc (100:1)] to give a white powder; yield: 288 mg (85%). 1H NMR (500 MHz, CDCl3): δ = 8.79 (d, J = 8.3 Hz, 1 H), 8.74 (d, J = 8.4 Hz, 1 H), 8.56 (d, J = 8.2 Hz, 1 H), 7.86 (d, J = 8.4 Hz, 2 H), 7.80–7.72 (m, 2 H), 7.70–7.66 (m, 1 H), 7.63 (t, J = 7.5 Hz, 1 H), 7.50 (d, J = 7.8 Hz, 1 H), 7.47 (t, J = 7.7 Hz, 1 H), 7.38 (d, J = 7.6 Hz, 1 H), 7.25 (t, J = 7.5 Hz, 1 H). 13C NMR (126 MHz, CDCl3): δ = 196.99, 139.77, 133.85, 132.37, 132.34, 131.79, 130.91, 130.49, 130.47, 130.17, 129.87, 129.39, 128.89, 127.82, 127.38, 127.12, 126.88, 126.82, 122.88, 122.79.
  • 18 {3-[4-(Diphenylamino)phenyl]-9-phenanthryl}(phenyl)methanone (3m) A Schlenk tube equipped with magnetic stirrer bar was charged with (3-chloro-9-phenanthryl) (phenyl)methanone (2m; 158 mg, 0.5 mmol), TPA4BA (174 mg, 0.6 mmol), Pd(OAc)2 (11 mg, 0.05 mmol), dicyclohexyl(2′,4′,6′-triisopropylbiphenyl-2-yl)phosphine (XPhos; 48 mg, 0.1 mmol), and K3PO4∙3H2O (399 mg, 1.5 mmol). THF (5 mL) was then added, and the tube was degassed three times, then filled with N2. The mixture was heated at 100 °C for 24 h until the reaction was complete (TLC). The mixture was then cooled to r.t. and CH2Cl2 (30 mL) was added to fully dissolve the product. The mixture was extracted with H2O, and the organic phase was collected and mixed with silica powder, then dried in vacuo. The crude product was further purified by flash column chromatography [silica gel, PE–EtOAc (100:1)] to give a white powder; yield: 231 mg (88%). 1H NMR (500 MHz, CDCl3): δ = 8.93 (s, 1 H), 8.87 (d, J = 8.4 Hz, 1 H), 8.19 (d, J = 8.2 Hz, 1 H), 7.99 (d, J = 7.8 Hz, 2 H), 7.96 (d, J = 8.2 Hz, 1 H), 7.89 (d, J = 8.6 Hz, 2 H), 7.77 – 7.69 (m, 3 H), 7.68 – 7.60 (m, 2 H), 7.52 (t, J = 7.5 Hz, 2 H), 7.34 (t, J = 7.7 Hz, 4 H), 7.30 – 7.24 (m, 2 H), 7.22 (d, J = 8.0 Hz, 4 H), 7.10 (t, J = 7.3 Hz, 2 H). 13C NMR (126 MHz, CDCl3): δ = 147.67, 147.40, 138.70, 134.60, 132.45, 132.01, 130.23, 129.33, 129.26, 129.11, 128.61, 127.99, 127.32, 127.13, 126.69, 126.49, 125.92, 125.47, 124.51, 124.35, 124.17, 124.10, 123.98, 123.25, 123.03, 122.84, 122.66.