Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2025; 36(01): 65-68
DOI: 10.1055/a-2310-0880
DOI: 10.1055/a-2310-0880
letter
Ligand-Promoted Palladium-Catalyzed β-C(sp3)–H Arylation of Ketones Using Acetohydrazide as a Transient Directing Group
This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 21772092).

Abstract
A palladium-catalyzed β-C(sp3)–H arylation of aliphatic ketones by using acetohydrazide as a transient directing group has been developed. The reaction proceeds through a less-favored [5,5]-bicyclic palladacycle intermediate and is promoted by a pyridine ligand.
Key word
C–H arylation - transient directing group - acetohydrazides - ketones - palladium catalysis - pyridinesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2310-0880.
- Supporting Information
Publication History
Received: 05 April 2024
Accepted after revision: 20 April 2024
Accepted Manuscript online:
20 April 2024
Article published online:
29 April 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Majumdar P, Pati A, Patra M, Behera RK, Behera AK. Chem. Rev. 2014; 114: 2942
- 1b Lei J, Xie W, Li J, Wu Y, Xie X. Eur. J. Org. Chem. 2021; 4364 For selected recent reports, see
- 1c Chernov NM, Kustin RP, Pypa YV, Anisimov SO, Spiridonova DV, Shutov RV, Yakovleva IP. Adv. Synth. Catal. 2024; 366: 277
- 1d Yang J, Wang C, Huang B, Zhou H, Li J, Liu X. Org. Lett. 2024; 26: 498
- 1e Tello-Aburto R, Lucero AN, Rogelj S. Tetrahedron Lett. 2014; 55: 6266
- 1f Oh H, Kim H, Kim I. J. Org. Chem. 2023; 88: 11748
- 1g Komogortsev AN, Lichitskii BV, Melekhina VG. Org. Biomol. Chem. 2023; 21: 7224
- 1h Tyagi A, Hazra CK. Org. Chem. Front. 2024; 11: 1450
- 1i Halloran MW, Hudecek C, Burkart MD. Org. Process Res. Dev. 2023; 27: 1677
- 1j Chaudhry F, Abdullah S, un-Nisa M, Hayat A, Ahmad HA, Aslam S, Ashraf M, Munawar MA. ChemistrySelect 2024; 9: e202304160
- 2 Byrkit GD, Michalek GA. Ind. Eng. Chem. 1950; 42: 1862
- 3a Ergenç N, Günay NS, Demirdamar R. Eur. J. Med. Chem. 1998; 33: 143
- 3b Todeschini AR, de Miranda AL. P, da Silva KC. M, Parrini SC, Barreiro EJ. Eur. J. Med. Chem. 1998; 33: 189
- 3c Dragostin I, Dragostin OM, Samal SK, Dash S, Tatia R, Dragan M, Confederat L, Ghiciuc CM, Diculencu D, Lupușoru CE, Zamfir CL. Eur. J. Pharm. Sci. 2019; 137: 104974
- 3d Laborde J, Deraeve C, Bernardes-Génisson V. ChemMedChem 2017; 12: 1657
- 3e Fang H, Chen Z, Liu Y, Zhang T, Chang J, Li Z, Zhang L, Sui J, Ru J, Gu Y, Hua X. J. Agric. Food Chem. 2023; 71: 920
- 4a Abdel-Rhman MH, Samir G, Hussien MA, Hosny NM. Polyhedron 2024; 247: 116709
- 4b Woźniczka M, Szajdzinska-Pietek E, Jezierska J, Pasternak B, Gądek-Sobczyńska J, Kufelnicki A. Inorg. Chim. Acta 2017; 455: 659
- 4c Yang L, Liu X, Yang T, Chen Z, Guo J, Zheng L, Xiao X, Zeng G, Luo X, Luo S. Resour., Conserv. Recycl. 2023; 191: 106884
- 5a Prabhakar Ganesh PS. K, Muthuraja P, Gopinath P. Org. Lett. 2023; 25: 8361
- 5b Su B, Wei J.-b, Wu W.-l, Shi Z.-j. ChemCatChem 2015; 7: 2986
- 5c Yu B, Chen Y, Hong M, Duan P, Gan S, Chao H, Zhao Z, Zhao J. Chem. Commun. 2015; 51: 14365
- 5d Li H, Lu Y, Xu N, Jin X, Chen T, Yu J, Liu J. J. Org. Chem. 2024; 89: 1301
- 6a Wu Y, Shi B. Youji Huaxue 2020; 40: 3517
- 6b Goswami N, Bhattacharya T, Maiti D. Nat. Rev. Chem. 2021; 5: 646
- 6c Higham JI, Bull JA. Org. Biomol. Chem. 2020; 18: 7291
- 6d Liao G, Zhang T, Lin Z.-K, Shi B.-F. Angew. Chem. Int. Ed. 2020; 59: 19773
- 6e Amistadi-Revol H, Liu S, Prévost S. Eur. J. Org. Chem. 2023; 26: e202300582 For more recent reports, see
- 6f Zhang X.-L, Wang M.-Y, Liu H.-J, Wang Y.-Q. Org. Lett. 2024; 26: 41
- 6g Xu Z, Li Z, Liu C, Yang K, Ge H. Molecules 2024; 29: 259
- 7a Ma F, Lei M, Hu L. Org. Lett. 2016; 18: 2708
- 7b Chen J, Bai C, Tong X, Liu D, Bao Y.-S. RSC Adv. 2020; 10: 12192
- 7c Bai C, Chao B, Muschin T, Bao A, Baiyin M, Liu D, Bao Y.-S. Chem. Commun. 2021; 57: 11229
- 8 Wen F, Li Z. Adv. Synth. Catal. 2020; 362: 133
- 9 Chen J, Bai C, Ma H, Liu D, Bao Y.-S. Chin. Chem. Lett. 2021; 32: 465
- 10a Li Y.-H, Ouyang Y, Chekshin N, Yu J.-Q. J. Am. Chem. Soc. 2022; 144: 4727
- 10b Wang J, Dong C, Wu L, Xu M, Lin J, Wei K. Adv. Synth. Catal. 2018; 360: 3709
- 11a Cheng J.-T, Xiao L.-J, Qian S.-Q, Zhuang Z, Liu A, Yu J.-Q. Angew. Chem. Int. Ed. 2022; 61: e202117233
- 11b Zhu R.-Y, Li Z.-Q, Park HS, Senanayake CH, Yu J.-Q. J. Am. Chem. Soc. 2018; 140: 3564
- 12 4-(2-Ethyl-3-oxobutyl)benzonitrile (4h); Typical ProcedureA 15 mL reaction tube equipped with a magnetic stirrer bar was charged with 4-iodobenzonitrile (2h; 0.2 mmol, 2.0 equiv), AgTFA (0.25 mmol, 2.5 equiv), Pd(OAc)2 (0.01 mmol, 10 mol%), and ligand L9 (0.08 mmol, 80 mol%). A solution of ketone 1a (0.1 mmol, 1.0 equiv) and TDG1 (0.05 mmol, 50 mol%) in HFIP (1.0 mL) was then added. The tube was sealed and the mixture was stirred at r.t. for 10 min, then heated at 110 °C for 24 h. When the reaction was complete, the mixture was cooled to r.t., filtered through a silica gel plug, and concentrated in vacuo. The crude reaction mixture was purified by column chromatography (silica gel, hexanes–EtOAc (10:1)] to give a colorless oil; yield: 46%. 1H NMR [500 MHz, CDCl3): δ = 7.56 (d, J = 7.7 Hz, 2 H), 7.25 (d, J = 7.5 Hz, 2 H), 2.97 (dd, J = 13.2, 8.2 Hz, 1 H), 2.73 (ddd, J = 19.2, 13.3, 6.4 Hz, 2 H), 2.03 (s, 3 H), 1.66 (dt, J = 21.7, 7.2 Hz, 1 H), 1.52 (dt, J = 17.2, 5.3 Hz, 1 H), 0.91 (t, J = 7.4 Hz, 3 H). 13C NMR (126 MHz, CDCl3): δ = 211.0, 145.6, 132.2, 129.7, 118.8, 110.3, 55.5, 36.9, 30.1, 24.6, 11.3. HRMS (ESI-TOF): m/z calcd [M + H]+ for C13H16NO: 202.2768; found: 202.2765.§
- 13 Li Y.-H, Ouyang Y, Chekshin N, Yu J.-Q. ACS Catal. 2022; 12: 10581
For reviews, see:
For selected examples, see:
For reviews, see: