Synlett
DOI: 10.1055/a-2264-9040
synpacts

Accessing Reactive Metal Hydrides through Designed Heterometallic Bridges

Fernando Gonzalez
,
Edgardo De Leon
,
Manar M. Shoshani
M.M.S. acknowledges the National Science Foundation (CHE–2316582) and UT Science and Technology Acquisition and Retention Program (Grant no. 903-116).


Abstract

A methodology to access reactive hydride moieties is highly desirable, yet limited. Multimetallic hydride fragments are notable for their heightened reactivity and catalysis, but deliberate access to these species is lacking. In this highlight, we discuss recent developments by our group in the design of a new heterometallic complex that invokes an architecture designed to provide modular access to reactive hydride moieties by leveraging metal hydrides in combination with pendent donors to a model heterotrimetallic Ni–(Al–H)2 complex. An amplification of insertion-based reactivity has been examined in the hydrofunctionalization of quinolines, and our complex substantially outperformed the parent aluminum hydride LAlH (L = ligand). A potential rationale for the dramatically increased reactivity, and a further examination of these motifs and methodology in catalysis are also discussed.

1. Introduction

2. Heterometallic Hydride Design and Characterization

3. Amplification in Catalysis

4. Summary and Outlook



Publication History

Received: 30 December 2023

Accepted after revision: 08 February 2024

Accepted Manuscript online:
08 February 2024

Article published online:
22 February 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Buchwalter P, Rose J, Braunstein P. Chem. Rev. 2015; 115: 28
    • 1b Ghosh AC, Duboc C, Gennari M. Coord. Chem. Rev. 2021; 428: 213606
    • 1c Bullock RM, Chen JG, Gagliardi L, Chirik PJ, Farha OK, Hendon CH, Jones CW, Keith JA, Klosin J, Minteer SD, Morris RH, Radosevich AT, Rauchfuss TB, Strotman NA, Vojvodic A, Ward TR, Yang JY, Surendranath Y. Science 2020; 369: eabc3183
    • 2a Wheelhouse KM. P, Webster RL, Beutner GL. Organometallics 2023; 42: 1677
    • 2b Su B, Cao Z.-C, Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
    • 3a Mankad NP. In Non-Noble Metal Catalysis: Molecular Approaches and Reactions . Klein Gebbink R, Moret M.-E. Wiley-VCH; Weinheim: 2019. 49
    • 3b Campos J. Nat. Rev. Chem. 2020; 4: 696
    • 3c Lin S, Agapie T. Synlett 2011; 1
  • 4 Papish ET, Magee MP, Norton JR. In Recent Advances in Hydride Chemistry . Peruzzini M, Poli R. Elsevier; Amsterdam: 2001. 39
  • 5 Hu S, Shima T, Hou Z. Nature 2014; 512: 413
  • 6 Shima T, Luo G, Hu S, Luo Y, Hou Z. J. Am. Chem. Soc. 2019; 141: 2713
    • 7a Ferreira RB, Murray LJ. Acc. Chem. Res. 2019; 52: 447
    • 7b Shoshani MM, Johnson SA. Nat. Chem. 2017; 9: 1282
  • 8 Yu H.-C, Islam SM, Mankad NP. ACS Catal. 2020; 10: 3670
  • 9 Ghosh P, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2021; 60: 16035
    • 10a Abis L, Santi R, Halpern J. J. Organomet. Chem. 1981; 215: 263
    • 10b Hu S, Luo G, Shima T, Luo Y, Hou Z. Nat. Commun. 2017; 8: 1866
  • 11 Singh RP, Sinhababu S, Mankad NP. ACS Catal. 2023; 13: 12519
  • 12 Fischer K, Jonas K, Misbach P, Stabba R, Wilke G. Angew. Chem. Int. Ed. 1973; 12: 943
    • 13a Yoo C, Dodge HM, Miller AJ. Chem. Commun. 2019; 55: 5047
    • 13b Tran TV, Karas LJ, Wu JI, Do LH. ACS Catal. 2020; 10: 10760
    • 13c Golwankar RR, Kumar A, Day VW, Blakemore JD. Chem. Eur. J. 2022; 28: e202200344
    • 13d Charles RM. III, Yokley TW, Schley ND, DeYonker NJ, Brewster TP. Inorg. Chem. 2019; 58: 12635
    • 14a Cai Y, Jiang S, Rajeshkumar T, Maron L, Xu X. J. Am. Chem. Soc. 2022; 144: 16647
    • 14b Gorgas N, White AJ, Crimmin MR. J. Am. Chem. Soc. 2022; 144: 8770
    • 14c Huang J, Zheng X, del Rosal I, Zhao B, Maron L, Xu X. Inorg. Chem. 2020; 59: 13473
    • 15a Rudd PA, Liu S, Gagliardi L, Young VG. Jr, Lu CC. J. Am. Chem. Soc. 2011; 133: 20724
    • 15b Takaya J, Iwasawa N. J. Am. Chem. Soc. 2017; 139: 6074
    • 15c Lai Q, Cosio MN, Ozerov OV. Chem. Commun. 2020; 56: 14845
  • 16 For a review, see: Shoshani MM. Cell Rep. Phys. Sci. 2022; 4: 101213 DOI: 10.1016/j.xcrp.2022.101213.
  • 17 De Leon E, Gonzalez F, Bauskar P, Gonzalez-Eymard S, De Los Santos D, Shoshani MM. Organometallics 2023; 42: 435
    • 18a Steinke T, Gemel C, Cokoja M, Winter M, Fischer RA. Angew. Chem. Int. Ed 2004; 43: 2299
    • 18b Pribanic B, Trincado M, Eiler F, Vogt M, Comas-Vives A, Grützmacher H. Angew. Chem. Int. Ed 2020; 59: 15603
    • 18c Pörschke KR, Kleimann W, Tsay YH, Krüger C, Wilke G. Chem. Ber. 1990; 123: 1267
    • 18d Graziano BJ, Vollmer MV, Lu CC. Angew. Chem. Int. Ed. 2021; 60: 15087
  • 19 Li Y, Liang H, Liu Y, Lin J, Ke Z. ACS Catal. 2023; 13: 13008
  • 20 Parkin G. Organometallics 2006; 25: 4744
  • 21 Harman WH, Lin T.-P, Peters JC. Angew. Chem. Int. Ed 2014; 53: 1081
  • 22 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
  • 23 Seidel FW, Nozaki K. Angew. Chem. Int. Ed 2022; 61: e202111691
  • 24 Hale DJ, Ferguson MJ, Turculet L. ACS Catal. 2021; 12: 146