Synthesis 2024; 56(10): 1601-1607
DOI: 10.1055/a-2256-9837
paper

I2-Catalyzed Oxidative Acylation of Tertiary Amines via C–N Bond Cleavage

Xin Ge
a   State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, P. R. of China
,
Ping Lei
a   State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, P. R. of China
,
Qin Su
a   State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, P. R. of China
,
Ying-Ming Pan
b   State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Gui Lin, 541004, P. R. of China
,
a   State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, P. R. of China
b   State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Gui Lin, 541004, P. R. of China
› Author Affiliations
The authors are grateful for financial support from the State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources through Guangxi Normal University (Grant No. CMEMR 2020-B12) and the National Natural Science Foundation of China (Grant No. 21961038).


Abstract

The development of catalysts for the amidation of tertiary amines with acyl chlorides through oxidative C–N bond cleavage is rather challenging. By employing iodine as the catalyst, a broad range of aromatic acyl chlorides and tertiary amines are efficiently converted into amides in good yields under mild conditions. A plausible mechanistic pathway is proposed for this transformation and is supported by appropriate control experiments.

Supporting Information



Publication History

Received: 12 November 2023

Accepted after revision: 30 January 2024

Accepted Manuscript online:
30 January 2024

Article published online:
14 February 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Hassa Tolba A, Krupicka M, Chudoba J, Cibulka R. Org. Lett. 2021; 23: 6825
    • 2a Nicholson WI, Barreteau F, Leitch JA, Payne R, Priestley I, Godineau E, Battilocchio C, Browne DL. Angew. Chem. Int. Ed. 2021; 60: 21868
    • 2b Zheng YL, Newman SG. ACS Catal. 2019; 9: 4426
  • 3 Adebomi V, Sriram M, Streety X, Raj M. Org. Lett. 2021; 23: 6189
  • 4 Yuan L, Wang Z, Trenor NM, Tang C. Polym. Chem. 2016; 7: 2790
  • 5 Fang H, Yuan M, Chen Z, Cheng S, Hua X, Wang B, Liu W. Med. Chem. Res. 2022; 31: 485
  • 6 Massolo E, Pirola M, Benaglia M. Eur. J. Org. Chem. 2020; 4641
  • 7 Wei Y, Miao KL, Hao SH. Molecules 2018; 23: 122
  • 8 Alvarez-Perez A, Esteruelas MA, Izquierdo S, Varela JA, Saa C. Org. Lett. 2019; 21: 5346
  • 9 Gu J, Fang Z, Liu C, Yang Z, Li X, Wei P, Guo K. RSC Adv. 2015; 5: 95014
    • 10a Tang L, Matuska JH, Huang YH, He YH, Guan Z. ChemSusChem 2019; 12: 2570
    • 10b Guo W, Huang J, Wu H, Liu T, Luo Z, Jian J, Zeng Z. Org. Chem. Front. 2018; 5: 2950
    • 10c Sawant DN, Bagal DB, Ogawa S, Selvam K, Saito S. Org. Lett. 2018; 20: 4397
    • 11a Chen X, Hu S, Chen R, Wang J, Wu M, Guo H, Sun S. RSC Adv. 2018; 8: 4571
    • 11b Krabbe SW, Chan VS, Franczyk TS, Shekhar S, Napolitano JG, Presto CA, Simanis JA. J. Org. Chem. 2016; 81: 10688
    • 12a Zhou J, Paladino M, Hall DG. Eur. J. Org. Chem. 2022; 116
    • 12b Wang SP, Cheung CW, Ma JA. J. Org. Chem. 2019; 84: 139224
    • 13a Jiang YY, Zhu L, Liang Y, Man X, Bi S. J. Org. Chem. 2017; 82: 9087
    • 13b Karthik S, Sreedharan R, Gandhi T. ChemistrySelect 2019; 4: 175
    • 14a Singh K, Pal NK, Guha C, Bera JK. J. Organomet. Chem. 2019; 886: 1
    • 14b Cheung CW, Shen N, Wang SP, Ullah A, Hu X, Ma JA. Org. Chem. Front. 2019; 6: 756
    • 15a Shi R, Lu L, Zhang H, Chen B, Sha Y, Liu C, Lei A. Angew. Chem. Int. Ed. 2013; 52: 10582
    • 15b Mane RS, Bhanage BM. J. Org. Chem. 2016; 81: 1223
    • 15c Shi R, Lu L, Xie H, Yan J, Xu T, Zhang H, Qi X, Lan Y, Lei A. Chem. Commun. 2016; 52: 13307
    • 15d Gao B, Huang H. Org. Lett. 2017; 19: 6260
    • 16a Chen X, Chen T, Yin S. Chem. Eur. J. 2014; 20: 12234
    • 16b Ji J, Liu Z, Sun P. Org. Biomol. Chem. 2016; 14: 7018
    • 16c Fu Y, Chatterjee NP, Du Z. Adv. Synth. Catal. 2018; 360: 3502
    • 16d Chen C, Liu P, Luo M, Zeng X. ACS Catal. 2018; 8: 5864
    • 17a Ouyang K, Wei H, Zhang W, Xi Z. Chem. Rev. 2015; 115: 12045
    • 17b Wang Q, Su Y, Li L, Huang H. Chem. Soc. Rev. 2016; 45: 1257
    • 17c Chaudhari MB, Gnanaprakasam B. Chem. Asian J. 2019; 14: 76
    • 18a de Figueiredo RM, Suppo JS, Campagne JM. Chem. Rev. 2016; 116: 12029
    • 18b Savanur HM, Malunavar SS, Prabhala P, Sutar SM, Kalkhambkar RG, Laali KK. Tetrahedron Lett. 2019; 60: 151159
    • 19a Li Z, Guo C, Chen J, Yao Y, Luo Y. Appl. Organomet. Chem. 2020; 34: 5517
    • 19b Ling L, Chen C, Luo M, Zeng X. Org. Lett. 2019; 21: 1912
    • 20a Wang S, Wang J, Guo R, Wang G, Chen SY, Yu XQ. Tetrahedron Lett. 2013; 54: 6233
    • 20b Xiong N, Dong Y, Xu B, Li Y, Zeng R. Org. Lett. 2022; 24: 4766
    • 20c Mai W, Song G, Yuan J, Yang L, Sun G, Xiao Y, Mao P, Qu L. RSC. Adv. 2013; 3: 3869
    • 21a Zhang Z, Liu YH, Zhang X, Wang XC. Tetrahedron 2019; 75: 2763
    • 21b Zhan W, Ji L, Ge ZM, Wang X, Li RT. Tetrahedron 2018; 74: 1527
  • 22 Kolekar YA, Bhanage BM. J. Org. Chem. 2021; 86: 14028
  • 23 Gu C, Wang S, Zhang Q, Xie J. Chem. Commun. 2022; 58: 5873
  • 24 Liu C, Chen HN, Xiao TF, Hu XQ, Xu PF, Xu GQ. Chem. Commun. 2023; 59: 2003
  • 25 Wang Y, Li S, Wang X, Yao Y, Feng L, Ma C. RSC Adv. 2022; 12: 5919
  • 26 Fairley M, Bole LJ, Mulks FF, Main L, Kennedy AR, O’Hara CT, García-Alvarez J, Hevia E. Chem. Sci. 2020; 11: 6500
  • 27 Hie L, Fine Nathel NF, Hong X, Yang Y.-F, Houk KN, Garg NK. Angew. Chem. Int. Ed. 2016; 55: 2810
  • 28 Su J, Mo JN, Chen X, Umanzor A, Zhang Z, Houk KN, Zhao J. Angew. Chem. Int. Ed. 2021; 61: e202112668