Zeitschrift für Komplementärmedizin 2024; 16(01): 16-25
DOI: 10.1055/a-2239-4034
Wissen
Ätherische Öle bei bakteriellen und viralen Erkrankungen

Antivirale und viruzide Eigenschaften von ätherischen Ölen und ihren isolierten Verbindungen – Stand der präklinischen Forschung

Jürgen Reichling
,
Rainer Stange

Summary

Ätherische Öle (ÄÖ) als Vielstoffgemische sowie einzelne chemisch charakterisierte Ätherisch-Öl-Verbindungen (ÄÖV) haben zahlreiche pharmakologische Wirkungen, wie antibakterielle, antimykotische, antivirale, entzündungshemmende, immunmodulatorische, antioxidative und wundheilungsfördernde. Auf der Grundlage ausgewählter wissenschaftlicher Arbeiten befasst sich die vorliegende Übersicht mit den potenziellen antiviralen und viruziden Aktivitäten von ÄÖ und ÄÖV gegen behüllte und unbehüllte Viren. Neuere In-vitro- und In-vivo-Studien haben gezeigt, dass verschiedene Arznei- und Aromapflanzen antiviral und viruzid wirkende ÄÖ und ÄÖV enthalten, die in der Lage sind, in verschiedenen Wirtszelllinien die Vermehrung von DNA- und RNA-Viren zu behindern, indem sie wichtige Schritte des viralen Infektions-/Replikationszyklus blockieren. In-vivo-Studien an Mäusen mit Viren als Atemwegserreger haben gezeigt, dass verschiedene ÄÖ und ÄÖV das Leben infizierter Tiere verlängern, Virustiter in Gehirn und Lungengewebe reduzieren und die Biosynthese von proinflammatorischen Zytokinen hemmen können. Neuere Arbeiten auf technologischem Gebiet konnten nachweisen, dass nanoverkapselte ÄÖ/ÄÖV eine vielversprechende Möglichkeit darstellen, um die chemische Stabilität, Wasserlöslichkeit, Bioverfügbarkeit und antivirale Wirkung von ÄÖ und ÄÖV zu verbessern.



Publication History

Article published online:
02 February 2024

© 2024. Thieme. All rights reserved.

© Karl F. Haug Verlag in MVS Medizinverlage Stuttgart GmbH & Co.
KG

 
  • Literatur

  • 1 Zhong P, Agosto LM, Munro JB, Mothes W. Cell-to-cell transmission of viruses. Curr Opin Virol 2013; 3: 44-50
  • 2 Nasir A, Romero-Severson E, Claverie J-M. Investigating the concept and origin of viruses. Trends Microbiol 2020; 28: 959-967
  • 3 Jones JE, Le Sage V, Lakdawala SS. Viral and host heterogeneity and their effects on the viral life cycle. Nat Rev Microbiol 2021; 19: 272-282
  • 4 Rumlova M, Ruml T. In vitro methods for testing antiviral drugs. Biotechnol Adv 2018; 36: 557-576
  • 5 Louten J. Essential Human Virology. Chapter 4, Virus Replication. In: Louten J. Virus Replicatiom. Amsterdam, London: Elsevier, Academic Press; 2016: 49-70
  • 6 Aoki-Utsubo C, Chen M, Hotta H. Time-of-addition and temperature-shift assays to determine particular step(s) in the viral life cycle that is blocked by antiviral substance(s). BioProtoc 2018; 8: 1-12
  • 7 De Clercq E, Lia G. Approved antiviral drugs over the past 50 years. Clin Microbiol Rew 2016; 29: 695-747
  • 8 Bright KR, Gilling DH. Natural virucidal compounds in foods. In: Goyal S, Cannon J, Hrsg. Viruses in Foods. Food Microbiology and Food Safety. Cham: Springer; 2016: 449-469
  • 9 Jones ST. How materials can beat a virus. J Mater Sci 2020; 55: 9148-9151
  • 10 Kumari CBC, Nagaveni HC. Essential oils of aromatic plants with antifungal, antibacterial, antiviral, and cytotoxic properties – An overview. J Pharmacogn Phytochem 2018; 7: 278-282
  • 11 Tariq S, Wani S, Rasool W, Bhat M. et al A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb Pathog 2019; 134: 103580
  • 12 Ma L, Yao L. Antiviral effects of plant-derived essential oils and their components: An updated review. Molecules 2020; 25: 2627
  • 13 Reichling J. Plant-microbe interaction and secondary metabolites with antiviral, antibacterial and antifungal properties. In: W. Wink, ed. Functions and Biotechnology of Plant Secondary Metabolites. West Sussex, United Kingdom: Wiley-Blackwell; 2010: 214-347
  • 14 Swamy MK, Akhtar MS, Sinniah UR. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evid Based Complement Alternat Med 2016; 2016: 3012462
  • 15 Setzer WN. Essential oils as complementary and alternative medicines for the treatment of influenza. Am J Essent Oil Nat Prod 2016; 4: 16-22
  • 16 Ebenezer KS, Manivannan R, Punniyamoorthy A. et al Plant secondary metabolites of antiviral properties a rich medicinal source for drug discovery: A mini review. J Drug Deliv Ther 2019; 9: 161-167
  • 17 Lelešius R, Karpovaitė A, Mickienė R. et al In vitro antiviral activity of fifteen plant extracts against avian infectious bronchitis virus. BMC Vet Res 2019; 15: 178
  • 18 Ben-Shabat S, Yarmolinsky L, Porat D. et al Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv Transl Res 2020; 10: 354-367
  • 19 Ha TKQ, Lee BW, Nguyen NH. et al Antiviral activities of compounds isolated from Pinus densiflora (pine tree) against the influenza A virus. Biomolecules 2020; 10: 711
  • 20 Kaushik S, Kaushik S, Sharma V. et al Antiviral and therapeutic uses of medicinal plants and their derivatives against dengue viruses. Phcog Rev 2018; 12: 177-185
  • 21 Patra JK, Das G, Bose S. et al Star anise (lllicium verum): Chemical compounds, antiviral properties, and clinical relevance. Phytother Res 2020; 34: 1248-1267
  • 22 Wink M. Potential of DNA intercalating alkaloids and other plant secondary metabolites against SARS-CoV-2 causing COVID-19. Diversity 2020; 175: 1-12
  • 23 Chouhan S, Sharma K, Guleria S. Antimicrobial activity of some essential oils – present status and future perspectives. Medicines 2017; 4: 58
  • 24 Paul S, Hmar EBL, Zothantluanga JH. et al Essential oils: A review on their salient biological activities and major delivery strategies. Science Vision 2020; 20: 54-71
  • 25 Reichling J. Anti-biofilm and virulence-factor reducing activities of essential oils and oil components as possible option for bacterial infection control. Planta Med 2020; 86: 520-537
  • 26 Juergens UR. Dethlefsen, Steinkamp G et al Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: A double-blind placebo-controlled trial. Respiratory Med 2003; 97: 250-256
  • 27 Juergens LJ, Worth H, Juergens UR. New perspectives for mucolytic, anti-inflammatory and adjunctive therapy with 1,8-cineole in COPD and asthma: Review on the new therapeutic approach. Adv Ther 2020; 37: 1737-1753
  • 28 Asif M, Saleem M, Saadullah M. et al COVID-19 and therapy with essential oils having antiviral, anti-inflammatory, and immunomodulatory properties. Inflammopharmacology 2020; 28: 1153-1161
  • 29 Sandner G, Heckmann M, Weghuber J. Immunomodulatory activities of selected essential oils. Biomolecules 2020; 10: 1139
  • 30 Khezri K, Farahpour MR, Mounesi Rad S. Accelerated infected wound healing by topical application of encapsulated rosemary essential oil into nanostructured lipid carriers. Artif Cells Nanomed Biotechnol 2019; 47: 980-988
  • 31 Cagno V, Donalisio M, Civra A. et al In vitro evaluation of the antiviral properties of Shilajit and investigation of its mechanisms of action. J Ethnopharmacol 2015; 166: 129-134
  • 32 Cagno V, Tintori C, Civra A. et al Novel broad spectrum virucidal molecules against enveloped viruses. PLoS ONE 2018; 13 (12) e0208333
  • 33 Gu L, Schneller SW, Li Q. Assays for the identification of novel antivirals against Bluetongue virus. J Vis Exp 2013; 80: e50820
  • 34 Webster RG, Bean WJ, Gorman OT. et al Evolution and ecology of influenza A viruses. Microbiol Rev 1992; 56: 152-179
  • 35 Samji T. Influenza A: Understanding the viral life cycle. Yale J Biol Med 2009; 82: 153-159
  • 36 Garozzo A, Timpanaro R, Stivala A. et al Activity of Melaleuca alternifolia (tea tree) oil on influenza virus A/PR/8: Study on the mechanism of action. Antiviral Res 2010; 89 (01) 83-88
  • 37 Guinea R, Carrasco L. Concanamycin A blocks influenza virus entry into cells under acidic conditions. FEBSLett 1994; 349: 327-330
  • 38 Guinea R, Carrasco L. Requirement for vacuolar proton-ATPase activity during entry of influenza virus into cells. J Virol 1995; 69: 2306-2312
  • 39 Wang R, Zhu Y, Zhao J. et al Autophagy promotes replication of influenza A virus in vitro. J Virol 2019; 93: e01984-18
  • 40 Dai J-P, Zhao X-F, Zeng J. et al Drug screening for autophagy inhibitors based on the dissociation of beclin1-Bcl2 complex using BiFC technique and mechanism of eugenol on anti-influenza A virus activity. PLoS ONE 2013; 8: e61026
  • 41 Liao Q, Qian Z, Liu R. et al Germacrone inhibits early stages of influenza virus infection. Antiviral Res 2013; 100: 578-588
  • 42 Li Y, Lai Y, Wang Y, Liu N. et al 1,8-Cineol protect against influenza-virus-induced pneumonia in mice. Inflammation 2016; 39: 1582-1592
  • 43 Tellier R. Review of aerosol transmission of influenza A virus. Emerg Infect Dis 2006; 12: 1657-1662
  • 44 Richard M, van den Brand JMA, Bestebroer TM. et al Influenza A viruses are transmitted via the air from the nasal respiratory epithelium of ferrets. Nat Commun 2020; 11: 766
  • 45 Usachev EV, Pyankov OV, Usacheva OV. et al Antiviral activity of tea tree and eucalyptus oil aerosol and vapor. J Aerosol Sci 2013; 59: 22-30
  • 46 Vimalanathan S, Hudson J. Anti-influenza virus activity of essential oils and vapors. Am J Essent Oil Nat Prod 2014; 2: 47-53
  • 47 Chandevar P, Chavhan B, Sahare A. et al SARS coronavirus: A review of threat in global world. Inter J Res Pharm Pharmac Science 2020; 5: 1-9
  • 48 Al-Garawyi AMA, Hussein TA, Jassim MMA. Inhibition of viral infection by using of natural herbal remedies as alternative treatment. Sys Rev Pharm 2020; 11: 416-419
  • 49 Merad M, Martin JC. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Immunology 2020; 20: 355-362
  • 50 Antonio AS, Wiedemann LSM, Veiga-Junior VF. Natural products’ role against COVID-19. RSC Adv 2020; 10: 23379-23393
  • 51 Verma S, Twilley D, Esmear T. et al Anti-SARS-CoV natural products with the potential to inhibit SARS-CoV-2 (COVID-19). Front Pharmacol 2020; 11: 561334
  • 52 Silveira D, Prieto-Garcia JM, Boylan F. et al COVID-19: Is there evidence for the use of herbal medicines as adjuvant symptomatic therapy?. Front Pharmacol 2020; 11: 581840
  • 53 Panyod S, Ho C-T, Sheen L-Y. Dietary therapy and herbal medicine for COVID-19 prevention: A review and perspective. J Tradit Complement Med 2020; 10: 420-427
  • 54 Nadjib BM. Effective antiviral activity of essential oils and their characteristic terpenes against coronaviruses: An update. J Pharmacol Clin Toxicol 2020; 8: 1138
  • 55 Flouchi R, Fikri-Benbrahim K. Prevention of COVID 19 by aromatic and medicinal plants: A systematic review. J Pharm Sci Res 2020; 12: 1106-1111
  • 56 Kumar KJS, Vani MG, Wang C-S. et al Geranium and lemon essential oils and their active compounds downregulate angiotensin-converting enzyme 2 (ACE2), a SARS-CoV-2 spike receptor-binding domain, in epithelial cells. Plants 2020; 9: 770
  • 57 Reichling J. Antibacterial and antiviral effects of aromatic plant-derived essential oils – A scientific and medicinal approach. In: Rai M, Cordell GA, Martinez JL, Marinoff M, Rastrelli L, eds. Medicinal Plants – Biodiversity and drugs. Boca Raton: CRC Press; 2012: 622-640
  • 58 Cagno V, Sgorbini B, Sanna C. et al In vitro anti-herpes simplex virus-2 activity of Salvia desoleana Atzei & V. Picci essential oil. PLoS ONE 2017; 12 (02) e0172322
  • 59 Schnitzler P. Essential oils for the treatment of herpes simplex virus infections. Chemotherapy 2019; 64: 1-7
  • 60 Álvarez DM, Castillo E, Duarte LF. et al Current antivirals and novel botanical molecules interfering with herpes simplex virus infection. Front Microbiol 2020; 11: 139
  • 61 Schnitzler P, Schumacher A, Reichling J. Melissa officinalis oil affects infectivity of enveloped herpes viruses. Phytomedicine 2008; 15: 734-740
  • 62 Schnitzler P, Astani A. Reichling J. Antiviral effects of plant-derived essential oils and pure oil components. In: Halldor T. ed. Lipids and Essential Oils as Antimicrobial Agents. West Sussex, United Kingdom: John Wiley & Sons, Ltd.; 2011: 239-254
  • 63 Brand YM, Roa-Linares VC, Betancur-Galvis LA. et al Antiviral activity of Colombian Labiatae and Verbenaceae family essential oils and monoterpenes on human herpes viruses. J Essent Oil Res 2016; 28 (02) 130-137
  • 64 Walaszek R, Marszalek A, Kasperczyk T. et al The efficacy of aromatherapy in prevention of herpes simplex virus infections. Ind J Trad Knowledge 2018; 17: 425-429
  • 65 Siddiqui YM, Ettayebi M, Haddad AM. et al Effect of essential oils on the enveloped viruses: Antiviral activity of oregano and clove oils on herpes simplex virus type 1 and Newcastle disease virus. Med Sci Res 1996; 24: 185-186
  • 66 Lai WL, Chuang HS, Lee MH. et al Inhibition of herpes simplex virus type 1 by thymol-related monoterpenoids. Planta Med 2012; 78: 1636-1638
  • 67 Civitelli L, Panella S, Marcocci ME. et al In vitro inhibition of herpes simplex virus type 1 replication by Mentha suaveolens essential oil and its main component piperitenone oxide. Phytomedicine 2014; 21: 857-865
  • 68 Venturi CR, Danielli LJ, Klein F. et al Chemical analysis and in vitro antiviral and antifungal activities of essential oils from Glechon spathulata and Glechon marifolia. Pharm Biol 2015; 53: 682-688
  • 69 Astani A, Reichling J, Schnitzler P. Comparative study on the antiviral activity of selected monoterpenes derived from essential oils. Phytother Res 2010; 24: 673-79
  • 70 Astani A, Reichling J, Schnitzler P. Screening for antiviral activities of isolated compounds form essential oils. Evid Based Complement Alternat Med 2011; 2011: 253643
  • 71 Astani A, Schnitzler P. Antiviral activity of monoterpenes beta-pinene and limonene against herpes simplex virus in vitro. Iran J Microbiol 2014; 3: 150-55
  • 72 El-Baz FK, Mahmoud K, El-Senousy WM. et al Antiviral – Antimicrobial and schistosomicidal activities of Eucalyptus camaldulensis essential oils. Int J Pharm Sci Rev Res 2015; 31: 262-268
  • 73 Gavanji S, Sayedipour SS, Larki B. et al Antiviral activity of some plant oils against herpes simplex virus type 1 in Vero cell culture. J Acute Medicine 2015; 5: 62-68
  • 74 Sharifi-Rad J, Salehi B, Schnitzler P. et al Susceptibility of herpes simplex virus type 1 to monoterpenes thymol, carvacrol, p-cymene and essential oils of Sinapis arvensis L., Lallemantia royleana Benth. and Pulicaria vulgaris Gaertn. Cell Mol Biol (Noisy le Grand) 2017; 63 (08) 41-46
  • 75 Kamalabadi M, Astani A, Nemati F. Antiviral effect and mechanism of carvacrol on Herpes simplex virus type 1. Int J Med Lab 2018; 5: 113-122
  • 76 Douek DC, Roederer M, Koup RA. Emerging concepts in the immunopathogenesis of AIDS. Annu Rev Med 2009; 60: 471-484
  • 77 Das AT, Harwig A, Berkhout B. The HIV-1 Tat protein has a versatile role in activating viral transcription. J Virol 2011; 85: 9506-9516
  • 78 Feriotto G, Marchetti N, Costa V. et al Chemical composition of essential oils from Thymus vulgaris, Cymbopogon citratus, and Rosmarinus officinalis, and their effects on the HIV-1 Tat protein function. Chem Biodivers 2018; 15: e1700436
  • 79 Kaushik S, Kaushik S, Sharma V. et al Antiviral and therapeutic uses of medicinal plants and their derivatives against dengue viruses. Phcog Rev 2018; 12: 177-85
  • 80 Kadir SLA, Yaakop H, Zulkiffi RM. Potential anti-dengue medicinal plants: A review. J Nat Med 2013; 67: 677-689
  • 81 Ocazionez RE, Meneses R, Torres FA. et al Virucidal activity of Colombian Lippia essential oils on dengue virus replication in-vitro. Mem Inst Oswaldo Cruz, Rio de Janeiro 2010; 105: 304-309
  • 82 Pajaro-Castro N, Flechas MC, Ocazionez R. et al Potential interaction of components from essential oils with dengue virus proteins. Bol Latinoam Caribe Plant Med Aromat 2015; 14: 141-155
  • 83 Flechas MC, Ocazionez RE, Stashenko EE. Evaluation of in vitro antiviral activity of essential oil compounds against Dengue Virus. Pharmacogn J 2018; 10: 55-59
  • 84 Monath TP, Barrett AD. Pathogenesis and pathophysiology of yellow fever. Adv Virus Res 2003; 60: 343-395
  • 85 Meneses R, Ocazionez RE, Martínez JR. et al Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in-vitro. Ann Clin Microbiol Antimicrob 2009; 8: 8
  • 86 Gómez LA, Stashenko E, Ocazionez RE. Comparative study on in vitro activities of citral, limonene and essential oils from Lippia citriodora and L. alba on yellow fever virus. Nat Prod Commun 2013; 8: 249-252
  • 87 Garozzo A, Timpanaro R, Bisignano B, Furneri PM, Bisignano G. Castro In vitro antiviral activity of Melaleuca alternifolia essential oil. Lett Appl Microbiol 2009; 49: 806-808
  • 88 Kovac K, Diez-Valcarce M, Raspor P, Hernándes M, Rodriques-Lazáro D. Natural plant essential oils do not inactivate non enveloped enteric viruses. Food Environ Virol 2012; 4: 209-212
  • 89 Rouis Z, Abid N, Koudja S, Yangui T. et al Evaluation of the cytotoxic effect and antibacterial, antifungal, and antiviral activities of Hypericum triquetrifolium Turra essential oils from Tunisia. BMC Complement Altern Med 2013; 13: 24
  • 90 Gilling DH, Kitajima M, Torrey JR. et al Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. J Appl Microbiol 2014; 116: 1149-1163
  • 91 Gilling DH, Kitajima M, Torrey JR. et al Mechanisms of antiviral action of plant antimicrobials against murine norovirus. Appl Environ Microbiol 2014; 80: 4898-4910
  • 92 Chung MS. Antiviral activities of Artemisia princeps var. orientalis essential oil and its α-thujone against norovirus surrogates. Food Sci Biotechnol 2017; 26: 1457-1461
  • 93 Dalldorf G, Sickles GM. An unidentified, filtrable agent isolated from the feces of children with paralysis. Science 1948; 108: 61-62
  • 94 Elaissi A, Rouis Z, Salem NAB, Mabrouk S. et al Chemical composition of 8 Eucalyptus species’ essential oils and the evaluation of their antibacterial, antifungal and antiviral activities. BMC Complement Altern Med 2012; 12: 81
  • 95 Vimalanathan S, Hudson J. The activity of Cedar leaf oil vapor gainst respiratory viruses: Practical applications. J App Pharm Sci 2013; 3: 011-015
  • 96 Bilia AR, Guccione C, Isacchi B. et al Essential oils loaded in nanosystems: A developing strategy for a successful therapeutic approach. Evid Based Complement Alternat Med 2014; 2014: 651593
  • 97 Rai M, Paralikar P, Jogee P. et al Synergistic antimicrobial potential of essential oils in combination with nanoparticles: Emerging trends and future perspectives. Intern J Pharm 2017; 519: 67-78
  • 98 De Matos SP, Teixeira HF, de Lima AAN. et al Essential oils and isolated terpenes in nanosystems designed for topical administration: A review. Biomolecules 2019; 9: 138
  • 99 Chakravarty M, Vora A. Nanotechnology-based antiviral therapeutics. Drug Deliv Transl Res 2021; 11: 748-787
  • 100 Lammari N, Louaer O, Meniai AH. et al Encapsulation of essential oils via nanoprecipitation process: Overview, progress, challenges and prospects. Pharmaceutics 2020; 12: 431
  • 101 Lai F, Sinico C, De Logu A. et al SLN as a topical delivery system for Artemisia arborescens essential oil: In vitro antiviral activity and skin permeation study. Int J Nanomedicine 2007; 2: 419-425
  • 102 Vanti G, Ntallis SG, Panagiotidis CA. et al Glycerosome of Melissa officinalis L. essential oil for effective anti-HSV type 1. Molecules 2020; 25: 3111
  • 103 Junior OT, Kuhn F, Padilha PJM. et al Effect of microencapsulated thyme essential oil on white spot virus-infected Litopenaeus vannamei. Aquacult Int 2018; 26: 1459-1468
  • 104 Reichling J. Antiviral and virucidal properties of essential oils and isolated compounds – A scientific approach. Planta Med 2022; 88: 587-603