Subscribe to RSS
DOI: 10.1055/a-2210-1162
A Fluorescent Probe for C24 Fatty Acids to Report the Deep Interior of Lipid Bilayers
This work was supported by Grants-in-Aid for Scientific Research (Grants Nos. 20K05728, 21H04707, 23K04943, and 23K17373).
Abstract
To investigate the interdigitation and the resulting fluctuation of lipid chains in the deep part of biomembranes, we aimed to develop a new fluorescent probe based on the well-known trans-parinaric acid (t-PA), but with a tetraene near the end of the C24 chain. The probe, tetracosa-16,18,20,22-tetraenoic acid (TCTEA), synthesized mainly by means of reported strategies, was found to better reflect the behavior of lipids in the deeper interior of bilayers than did t-PA. TCTEA could serve as a useful probe for studying the plasma-membrane dynamics of very-long-chain fatty acids, which have recently elicited significant attention in relation to necroptosis.
Key words
long-chain fatty acids - fatty acids - fluorescent probes - teteraenes - lipid bilayers - interdigitationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2210-1162.
- Supporting Information
Publication History
Received: 26 October 2023
Accepted after revision: 13 November 2023
Accepted Manuscript online:
13 November 2023
Article published online:
15 December 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Y. Umegawa has relocated to another position at the same university: Office of Management and Planning, Osaka University, 1–3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
- 2a Parmryd I. BioEssays 2023; e2300191
- 2b Li S, Huang F, Xia T, Shi Y, Yue T. Langmuir 2023; 39: 5995
- 2c Nakano M, Hanashima S, Hara T, Kabayama K, Asahina Y, Hojo H, Komura N, Ando H, Nyholm TK. M, Slotte JP, Murata M. Biochim. Biophys. Acta, Biomembr. 2021; 1863: 183623
- 3a Varki A, Cummings RD, Aebi M, Packer NH, Seeberger PH, Esko JD, Stanley P, Hart G, Darvill A, Kinoshita T, Prestegard JJ, Schnaar RL, Freeze HH, Marth JD, Bertozzi CR, Etzler ME, Frank M, Vliegenthart JF, Lütteke T, Perez S, Bolton E, Rudd P, Paulson J, Kanehisa M, Toukach P, Aoki-Kinoshita KF, Dell A, Narimatsu H, York W, Taniguchi N, Kornfeld S. Glycobiology 2015; 25: 1323
- 3b Chiricozzi E, Grazia Ciampa M, Brasile G, Compostella F, Prinetti A, Nakayama H, Ekyalongo RC, Iwabuchi K, Sonnino S, Mauri L. J. Lipid Res. 2015; 56: 129
- 3c Nakayama H, Kurihara H, Morita YS, Kinoshita T, Mauri L, Prinetti A, Sonnino S, Yokoyama N, Ogawa H, Takamori K, Iwabuchi K. Sci. Signaling 2016; 9: ra101
- 4 Usher JR, Epand RM, Papahadjopoulos D. Chem. Phys. Lipids 1978; 22: 245
- 5 Parisi LR, Sowlati-Hashjin S, Berhane IA, Galster SL, Carter KA, Lovell JF, Chemler SR, Karttunen M, Atilla-Gokcumen GE. ACS Chem. Biol. 2019; 14: 2286
- 6 Paz Ramos A, Lagüe P, Lamoureux G, Lafleur M. J. Phys. Chem. B 2016; 120: 6951
- 7 Sklar LA, Hudson BS, Simoni RD. Proc. Natl. Acad. Sci. U. S. A. 1975; 72: 1649
- 8 Sklar LA, Hudson BS, Petersen M, Diamond J. Biochemistry 1977; 16: 813
- 9 Sklar LA, Doody MC, Gotto AM. Jr, Pownall HJ. Biochemistry 1980; 19: 1294
- 10 Al Sazzad MA, Slotte JP. Langmuir 2016; 32: 5973
- 11 Calafut TM, Dix JA, Verkman AS. Biochemistry 1989; 28: 5051
- 12 Yapoudjian S, Ivanova M, Douchet I, Zénatti A, Sentis M, Marine W, Svendsen A, Verger R. Biopolymers 2002; 65: 121
- 13 Halling KK, Slotte JP. Biochim. Biophys Acta 2004; 1664: 161
- 14 Wang Y, Ma J, Cheon H.-S, Kishi Y. Angew. Chem. Int. Ed. 2007; 46: 1333
- 15 Kuklev DV, Smith WL. Chem. Phys. Lipids 2004; 131: 215
- 16 Quesada E, Delgado J, Hornillos V, Acuña AU, Amat-Guerri F. Eur. J. Org. Chem. 2007; 2285
- 17 Quesada E, Delgado J, Gajate C, Mollinedo F, Acuña AU, Amat-Guerri F. J. Med. Chem. 2004; 47: 5333
- 18 Quesada E, Acuña AU, Amat-Guerri F. Angew. Chem. Int. Ed. 2001; 40: 2095
- 19 Quesada E, Acuña AU, Amat-Guerri F. Eur. J. Org. Chem. 2003; 1308
- 20 Morin M, Rohe S, Elgindy C, Sherburn MS. Org. Synth. 2020; 97: 217
- 21 TCTEA (1) A mixture of the ester 5 (37.3 mg, 0.0996 mmol), hexane (16.6 mL), and a sat. solution of I2 in hexane (20.4 μL) was stirred under reflux at 45–50 °C for 15 min. The solvent was removed under reduced pressure, and the residue was purified by column chromatography [silica gel, hexane–EtOAc (50:1)] to give ester 6; Rf = 0.71 (hexane–EtOAc, 20:1). 1H NMR (500 MHz, CDCl3): δ = 6.13 (m, 6 H, 6 C=CH), 5.71 (m, 2 H, 2 C=CH–CH2), 3.66 (s, 3 H, OMe), 1.2–2.4 (m, 28 H, 14 CH2). A flask was charged with ester 6 (0.0288 g, 0.077 mmol), i-PrOH (2.3 mL), THF (0.357 mL), and 1 M aq KOH (4.61 mL), and the mixture was stirred at 35–40 °C for 1.5 h. The resulting mixture was extracted with EtOAc and the extracts were washed with H2O to give 1 as a yellow film: yield: 0.0235 g (0.0652 mmol, 82%); Rf = 0.05 (hexane–EtOAc, 20:1). 1H NMR (500 MHz, CDCl3): δ = 6.13 (m, 6 H, 6 C=CH), 5.71 (m, 2 H, 2 C=CH–CH2), 2.72 (s, 1 H, OH), 1.2–2.4 (m, 28 H, 14 CH2).
- 22 Tsuchikawa H, Monji M, Umegawa Y, Yasuda T, Slotte JP, Murata M. Langmuir 2022; 38: 5515
- 23 Yasuda T, Kinoshita M, Murata M, Matsumori N. Biophys. J. 2014; 106: 631
- 24 Yasuda T, Tsuchikawa H, Murata M, Matsumori N. Biophys. J. 2015; 108: 2502
- 25 Matsumori N, Yasuda T, Okazaki H, Suzuki T, Yamaguchi T, Tsuchikawa H, Doi M, Oishi T, Murata M. Biochemistry 2012; 51: 8363
- 26 Kornmueller K, Lehofer B, Leitinger G, Amenitsch H, Prassl R. Nano Res. 2018; 11: 913
- 27 Umegawa Y, Yamamoto T, Dixit M, Funahashi K, Seo S, Nakagawa Y, Suzuki T, Matsuoka S, Tsuchikawa H, Hanashima S, Oishi T, Matsumori N, Shinoda W, Murata M. Sci. Adv. 2022; 8: eabo2658