Synlett 2024; 35(11): 1269-1272
DOI: 10.1055/a-2210-1162
cluster
Japan/Netherlands Gratama Workshop

A Fluorescent Probe for C24 Fatty Acids to Report the Deep Interior of Lipid Bilayers

a   Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
,
Shiho Fukunaga
a   Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
,
Tomokazu Yasuda
a   Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
b   Forefront Research Center, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
,
Michio Murata
a   Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
b   Forefront Research Center, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
› Author Affiliations
This work was supported by Grants-in-Aid for Scientific Research (Grants Nos. 20K05728, 21H04707, 23K04943, and 23K17373).


Abstract

To investigate the interdigitation and the resulting fluctuation of lipid chains in the deep part of biomembranes, we aimed to develop a new fluorescent probe based on the well-known trans-parinaric acid (t-PA), but with a tetraene near the end of the C24 chain. The probe, tetracosa-16,18,20,22-tetraenoic acid (TCTEA), synthesized mainly by means of reported strategies, was found to better reflect the behavior of lipids in the deeper interior of bilayers than did t-PA. TCTEA could serve as a useful probe for studying the plasma-membrane dynamics of very-long-chain fatty acids, which have recently elicited significant attention in relation to necroptosis.

Supporting Information



Publication History

Received: 26 October 2023

Accepted after revision: 13 November 2023

Accepted Manuscript online:
13 November 2023

Article published online:
15 December 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Y. Umegawa has relocated to another position at the same university: Office of Management and Planning, Osaka University, 1–3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
    • 3a Varki A, Cummings RD, Aebi M, Packer NH, Seeberger PH, Esko JD, Stanley P, Hart G, Darvill A, Kinoshita T, Prestegard JJ, Schnaar RL, Freeze HH, Marth JD, Bertozzi CR, Etzler ME, Frank M, Vliegenthart JF, Lütteke T, Perez S, Bolton E, Rudd P, Paulson J, Kanehisa M, Toukach P, Aoki-Kinoshita KF, Dell A, Narimatsu H, York W, Taniguchi N, Kornfeld S. Glycobiology 2015; 25: 1323
    • 3b Chiricozzi E, Grazia Ciampa M, Brasile G, Compostella F, Prinetti A, Nakayama H, Ekyalongo RC, Iwabuchi K, Sonnino S, Mauri L. J. Lipid Res. 2015; 56: 129
    • 3c Nakayama H, Kurihara H, Morita YS, Kinoshita T, Mauri L, Prinetti A, Sonnino S, Yokoyama N, Ogawa H, Takamori K, Iwabuchi K. Sci. Signaling 2016; 9: ra101
  • 4 Usher JR, Epand RM, Papahadjopoulos D. Chem. Phys. Lipids 1978; 22: 245
  • 5 Parisi LR, Sowlati-Hashjin S, Berhane IA, Galster SL, Carter KA, Lovell JF, Chemler SR, Karttunen M, Atilla-Gokcumen GE. ACS Chem. Biol. 2019; 14: 2286
  • 6 Paz Ramos A, Lagüe P, Lamoureux G, Lafleur M. J. Phys. Chem. B 2016; 120: 6951
  • 7 Sklar LA, Hudson BS, Simoni RD. Proc. Natl. Acad. Sci. U. S. A. 1975; 72: 1649
  • 8 Sklar LA, Hudson BS, Petersen M, Diamond J. Biochemistry 1977; 16: 813
  • 9 Sklar LA, Doody MC, Gotto AM. Jr, Pownall HJ. Biochemistry 1980; 19: 1294
  • 10 Al Sazzad MA, Slotte JP. Langmuir 2016; 32: 5973
  • 11 Calafut TM, Dix JA, Verkman AS. Biochemistry 1989; 28: 5051
  • 12 Yapoudjian S, Ivanova M, Douchet I, Zénatti A, Sentis M, Marine W, Svendsen A, Verger R. Biopolymers 2002; 65: 121
  • 13 Halling KK, Slotte JP. Biochim. Biophys Acta 2004; 1664: 161
  • 14 Wang Y, Ma J, Cheon H.-S, Kishi Y. Angew. Chem. Int. Ed. 2007; 46: 1333
  • 15 Kuklev DV, Smith WL. Chem. Phys. Lipids 2004; 131: 215
  • 16 Quesada E, Delgado J, Hornillos V, Acuña AU, Amat-Guerri F. Eur. J. Org. Chem. 2007; 2285
  • 17 Quesada E, Delgado J, Gajate C, Mollinedo F, Acuña AU, Amat-Guerri F. J. Med. Chem. 2004; 47: 5333
  • 18 Quesada E, Acuña AU, Amat-Guerri F. Angew. Chem. Int. Ed. 2001; 40: 2095
  • 19 Quesada E, Acuña AU, Amat-Guerri F. Eur. J. Org. Chem. 2003; 1308
  • 20 Morin M, Rohe S, Elgindy C, Sherburn MS. Org. Synth. 2020; 97: 217
  • 21 TCTEA (1) A mixture of the ester 5 (37.3 mg, 0.0996 mmol), hexane (16.6 mL), and a sat. solution of I2 in hexane (20.4 μL) was stirred under reflux at 45–50 °C for 15 min. The solvent was removed under reduced pressure, and the residue was purified by column chromatography [silica gel, hexane–EtOAc (50:1)] to give ester 6; Rf = 0.71 (hexane–EtOAc, 20:1). 1H NMR (500 MHz, CDCl3): δ = 6.13 (m, 6 H, 6 C=CH), 5.71 (m, 2 H, 2 C=CH–CH2), 3.66 (s, 3 H, OMe), 1.2–2.4 (m, 28 H, 14 CH2). A flask was charged with ester 6 (0.0288 g, 0.077 mmol), i-PrOH (2.3 mL), THF (0.357 mL), and 1 M aq KOH (4.61 mL), and the mixture was stirred at 35–40 °C for 1.5 h. The resulting mixture was extracted with EtOAc and the extracts were washed with H2O to give 1 as a yellow film: yield: 0.0235 g (0.0652 mmol, 82%); Rf = 0.05 (hexane–EtOAc, 20:1). 1H NMR (500 MHz, CDCl3): δ = 6.13 (m, 6 H, 6 C=CH), 5.71 (m, 2 H, 2 C=CH–CH2), 2.72 (s, 1 H, OH), 1.2–2.4 (m, 28 H, 14 CH2).
  • 22 Tsuchikawa H, Monji M, Umegawa Y, Yasuda T, Slotte JP, Murata M. Langmuir 2022; 38: 5515
  • 23 Yasuda T, Kinoshita M, Murata M, Matsumori N. Biophys. J. 2014; 106: 631
  • 24 Yasuda T, Tsuchikawa H, Murata M, Matsumori N. Biophys. J. 2015; 108: 2502
  • 25 Matsumori N, Yasuda T, Okazaki H, Suzuki T, Yamaguchi T, Tsuchikawa H, Doi M, Oishi T, Murata M. Biochemistry 2012; 51: 8363
  • 26 Kornmueller K, Lehofer B, Leitinger G, Amenitsch H, Prassl R. Nano Res. 2018; 11: 913
  • 27 Umegawa Y, Yamamoto T, Dixit M, Funahashi K, Seo S, Nakagawa Y, Suzuki T, Matsuoka S, Tsuchikawa H, Hanashima S, Oishi T, Matsumori N, Shinoda W, Murata M. Sci. Adv. 2022; 8: eabo2658