Synthesis 2024; 56(03): 418-426
DOI: 10.1055/a-2201-9951
paper

Synthesis of Piperazin-2-one Derivatives via Cascade Double Nucleophilic Substitution

,
Dušica Kusljevic
,
Milos Jovanovic
,
Predrag Jovanovic
,
Gordana Tasic
,
Milena Simic
,
Vladimir Savic
This research was funded by the Ministry of Science, Technological Development and Innovation, Republic of Serbia through Grant Agreement with University of Belgrade-Faculty of Pharmacy No: 451-03-47/2023-01/ 200161.


Abstract

A cascade, metal-promoted transformation utilizing chloro allenylamide, primary amine, and aryl iodide afforded piperizinones in good yields. Under the optimized conditions the cascade is performed as a one-pot process allowing the formation of three bonds. The synthetic route, controlled by the reaction rates of several processes involved, introduces two points of diversity and is well suited for combinatorial synthesis or related technologies.

Supporting Information



Publication History

Received: 25 August 2023

Accepted after revision: 31 October 2023

Accepted Manuscript online:
31 October 2023

Article published online:
29 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Costa RF, Turones LC, Cavalcante KV. N, Rosa Júnior IA, Xavier CH, Rosseto LP, Napolitano HB, da Castro PF. S, Neto ML. F, Galvão GM, Menegatti R, Pedrino GR, Costa EA, Martins JL. R, Fajemiroye JO. Front. Pharmacol. 2021; 12: 666725
  • 2 Heravi M, Zadsirjan V. RSC Adv. 2020; 10: 44247
  • 3 Taylor AP, Robinson RP, Fobian YM, Blakemore DC, Jones LH, Fadeyi O. Org. Biomol. Chem. 2016; 14: 6611
  • 4 Zhang TY. Adv. Heterocycl. Chem. 2017; 121: 1
  • 5 St Jean DJ. Jr, Fotsch C. J. Med. Chem. 2012; 55: 6002
  • 6 Peerzada MN, Hamel E, Bai R, Supuran CT, Azam A. Pharmacol. Therap. 2021; 225: 107860
  • 7 Kumari S, Carmona AV, Tiwari AK, Trippier PC. J. Med. Chem. 2020; 63: 12290
  • 8 Subbaiah MA. M, Meanwell NA. J. Med. Chem. 2021; 64: 14046
  • 9 Ali I, Lone MN, Al-Othman ZA, Al-Warthan A, Sanagi MM. Curr. Drug Targets 2015; 16: 711
  • 10 Poulie CB. M, Bunch L. ChemMedChem 2013; 8: 205
  • 11 Gao B, Yang B, Feng X, Li C. Nat. Prod. Rep. 2022; 39: 139
  • 12 Joule JA. Adv. Heterocycl. Chem. 2016; 119: 81
  • 13 Magriotis PA. RSC Med. Chem. 2020; 11: 745
  • 14 Xu S, Sun L, Zalloum WA, Huang T, Zhang X, Ding D, Shao X, Jiang X, Zhao F, Cocklin S, De Clercq E, Pannecouque C, Dick A, Liu X, Zhan P. Molecules 2022; 27: 8415
  • 15 Zou P, Guo M, Hu J. Expert Rev. Clin. Pharmacol. 2022; 15: 747
  • 16 Zhang X, Chen S, Zhang L, Zhang Q, Zhang W, Chen Y, Zhang W, Zhang H, Zhang C. Org. Lett. 2021; 23: 2858
  • 17 Doenhoff MJ, Cioli D, Utzinger J. Curr. Opin. Infect. Dis. 2008; 21: 659
  • 18 D’Ambrosio M, Guerriero A, Debitus C, Ribes O, Pusset J, Leroy S, Pietra F. J. Chem. Soc., Chem. Commun. 1993; 1305
  • 19 Usmanova L, Dar’in D, Novikov MS, Gureev M, Krasavin M. J. Org. Chem. 2018; 83: 5859
  • 20 Golebiowski A, Jozwik J, Klopfenstein SR, Colson A.-O, Grieb AL, Russell AF, Rastogi VL, Diven CF, Portlock DE, Chen JJ. J. Comb. Chem. 2002; 4: 584
  • 21 Dinsmore CJ, Beshore DC. Org. Prep. Proced. Int. 2002; 34: 367
  • 22 Kolter T, Dahl C, Giannis A. Liebigs Ann. Chem. 1995; 625
  • 23 Dinsmore CJ, Zartman CB. Tetrahedron Lett. 2000; 41: 6309
  • 24 Goff DA. Tetrahedron Lett. 1998; 39: 1473
  • 25 Beccalli EM, Broggini G, Clerici F, Galli S, Kammerer C, Rigamonti M, Sottocornola S. Org. Lett. 2009; 11: 1563
  • 26 Jovanovic M, Petkovic M, Jovanovic P, Simic M, Tasic G, Eric S, Savic V. Eur. J. Org. Chem. 2019; 295