Subscribe to RSS
DOI: 10.1055/a-2191-5906
Efficient Protosilylation of Unsaturated Compounds with Silylboronates over a Heterogeneous Cu3N Nanocube Catalyst
This study was supported by JSPS KAKENHI (grants nos. 20H02523 and 21K04776) and JST PRESTO (grant no. JPMJPR21Q9). This study was partially supported by the JST-CREST (grant no. JPMJCR21L5). Part of the experimental analysis was supported by the ‘Advanced Research Infrastructure for Materials and Nanotechnology in Japan (ARIM)’ (grant no. JPMXP1222HK0062) of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT).
Abstract
Copper-catalyzed protosilylation of unsaturated compounds with silylboronates has attracted attention for the production of organosilanes; however, the use of organic ligands or bases is unavoidable. Herein, we report a heterogeneous catalytic system for the protosilylation of unsaturated compounds with silylboronates under mild and additive-free conditions over copper nitride nanocubes (Cu3N NCs). This method can be applied to various substrates (e.g., alkynes, alkenes, or imines) to afford the corresponding organosilicon compounds. The Cu3N NC catalyst can be easily recovered and reused several times. Thus, the active and reusable Cu3N NC catalyst offers a green and sustainable method for efficient organosilane production.
Key words
protosilylation - alkenes - alkynes - silanes - copper catalysis - heterogeneous catalysis - copper nitrideSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2191-5906.
- Supporting Information
Publication History
Received: 20 September 2023
Accepted after revision: 13 October 2023
Accepted Manuscript online:
13 October 2023
Article published online:
17 November 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Nakao Y, Hiyama T. Chem. Soc. Rev. 2011; 40: 4893
- 2 Ojima I, Li Z, Zhu J. In The Chemistry of Organic Silicon Compounds, Vol. 2, Chap. 29. Wiley; Chichester: 1998: 1687
- 3 Comprehensive Handbook on Hydrosilylation. Marciniec B. Pergamon; Oxford: 1992
- 4 Troegel D, Stohrer J. Coord. Chem. Rev. 2011; 255: 1440
- 5 Du X, Huang Z. ACS Catal. 2017; 7: 1227
- 6 Obligacion JV, Chirik PJ. Nat. Rev. Chem. 2018; 2: 15
- 7 Tamang SR, Findlater M. Molecules 2019; 24: 3194
- 8 Naganawa Y, Inomata K, Sato K, Nakajima Y. Tetrahedron Lett. 2020; 61: 151513
- 9 He P, Hu M.-Y, Zhang X.-Y, Zhu S.-F. Synthesis 2022; 54: 49
- 10 Wang P, Yeo X.-L, Loh T.-P. J. Am. Chem. Soc. 2011; 133: 1254
- 11 Gao L, Zhang Y, Song Z. Synlett 2013; 24: 139
- 12 Meng F, Jang H, Hoveyda AH. Chem. Eur. J. 2013; 19: 3204
- 13 Zhou H, Wang Y.-B. ChemCatChem 2014; 6: 2512
- 14 Hazra CK, Fopp C, Oestreich M. Chem. Asian J. 2014; 9: 3005
- 15 Calderone JA, Santos WL. Angew. Chem. Int. Ed. 2014; 53: 4154
- 16 Linstadt RT. H, Peterson CA, Lippincott DJ, Jette CI, Lipshutz BH. Angew. Chem. Int. Ed. 2014; 53: 4159
- 17 García-Rubia A, Romero-Revilla JA, Mauleón P, Gómez Arrayás R, Carretero JC. J. Am. Chem. Soc. 2015; 137: 6857
- 18 Xuan Q.-Q, Ren C.-L, Liu L, Wang D, Li C.-J. Org. Biomol. Chem. 2015; 13: 5871
- 19 Meng F.-F, Xie J.-H, Xu Y.-H, Loh T.-P. ACS Catal. 2018; 8: 5306
- 20 Zhao M, Shan C.-C, Wang Z.-L, Yang C, Fu Y, Xu Y.-H. Org. Lett. 2019; 21: 6016
- 21 Gao Y, Yazdani S, Kendrick A, Junor GP, Kang T, Grotjahn DB, Bertrand G, Jazzar R, Engle KM. Angew. Chem. Int. Ed. 2021; 60: 19871
- 22 Calderone JA, Santos WL. Org. Lett. 2012; 14: 2090
- 23 Xuan Q.-Q, Zhong N.-J, Ren C.-L, Liu L, Wang D, Chen Y.-J, Li C.-J. J. Org. Chem. 2013; 78: 11076
- 24 Kitanosono T, Zhu L, Liu C, Xu P, Kobayashi S. J. Am. Chem. Soc. 2015; 137: 15422
- 25 Plotzitzka J, Kleeberg C. Inorg. Chem. 2016; 55: 4813
- 26 Grirrane A, Corma A, García H. Science 2008; 322: 1661
- 27 Vyas DJ, Fröhlich R, Oestreich M. Org. Lett. 2011; 13: 2094
- 28 Tsuji Y, Fujihara T. Chem. Rec. 2016; 16: 2294
- 29 Fujihara T, Tsuji Y. Synthesis 2018; 50: 1737
- 30 Feng J.-J, Mao W, Zhang L, Oestreich M. Chem. Soc. Rev. 2021; 50: 2010
- 31 Xu H, Yamaguchi S, Mitsudome T, Mizugaki T. Org. Biomol. Chem. 2021; 19: 6593
- 32 Fujita S, Nakajima K, Yamasaki J, Mizugaki T, Jitsukawa K, Mitsudome T. ACS Catal. 2020; 10: 4261
- 33 Yamaguchi S, Fujita S, Nakajima K, Yamazoe S, Yamasaki J, Mizugaki T, Mitsudome T. Green Chem. 2021; 23: 2010
- 34 Ishikawa H, Nakatani N, Yamaguchi S, Mizugaki T, Mitsudome T. ACS Catal. 2023; 13: 5744
- 35 Carenco S, Portehault D, Boissière C, Mérzailles N, Sanchez C. Chem. Rev. 2013; 113: 7981
- 36 Gao Q, Liu N, Wang S, Tang Y. Nanoscale 2014; 6: 14106
- 37 Aireddy DR, Ding K. ACS Catal. 2022; 12: 4707
- 38 Xu H, Yamaguchi S, Mitsudome T, Mizugaki T. Org. Biomol. Chem. 2023; 21: 1404
- 39 Xu H, Yamaguchi S, Mitsudome T, Mizugaki T. Eur. J. Org. Chem. 2022; 2022: e202200826
- 40 Deshmukh R, Zeng G, Tervoort E, Staniuk M, Wood D, Niederberger M. Chem. Mater. 2015; 27: 8282
- 41 Suginome M, Nakamura H, Ito Y. Angew. Chem. Int. Ed. 1997; 36: 2516
- 42 Suginome M, Matsuda T, Yoshimoto T, Ito Y. Org. Lett. 1999; 1: 1567
- 43 Ohmura T, Taniguchi H, Suginome M. J. Am. Chem. Soc. 2006; 128: 13682
-
44
Dimethyl(phenyl)[(E)-styryl]silane (2a); Typical Procedure
1a (25.5 mg, 0.25 mmol), PhMe2Si–BPin (78.7 mg, 0.30 mmol), Cu3N NCs (2.5 mg, 5 mol%), and EtOH (1.0 mL) were mixed sequentially, and the resulting mixture was vigorously stirred at 30 °C for 1 h under Ar. The mixture was then concentrated in vacuo, and the residue was purified by flash chromatography (silica gel, hexane–EtOAc) to give a colorless oil; yield: 43.6 mg (0.183 mmol, 73%). 1H NMR (400 MHz, CDCl3): δ = 7.60–7.55 (m, 2 H), 7.45–7.42 (m, 2 H), 7.38–7.27 (m, 5 H), 7.30–7.22 (m, 1 H), 6.94 (d, J = 19.2 Hz, 1 H), 6.62 (d, J = 19.2 Hz, 1 H), 0.43 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 145.5, 138.7, 138.3, 134.1, 129.2, 128.7, 128.3, 128.0, 127.2, 126.7, –2.4. - 45 Hu M.-Y, Lian J, Sun W, Qiao T.-Z, Zhu S.-F. J. Am. Chem. Soc. 2019; 141: 4579
- 46 Chen W, Song H, Li J, Cui C. Angew. Chem. Int. Ed. 2020; 59: 2365
- 47 Wang G, Su X, Gao L, Liu X, Li G, Li S. Chem. Sci. 2021; 12: 10883
- 48 Diethyl {2-[dimethyl(phenyl)silyl]ethyl}phosphonate (3c); Typical Procedure Diethyl vinylphosphonate (41.0 mg, 0.25 mmol), PhMe2Si–BPin (98.3 mg, 0.375 mmol), Cu3N NCs (2.5 mg, 5 mol%), and EtOH (1.0 mL) were mixed sequentially, and the resulting mixture was vigorously stirred at 30 °C for 12 h under Ar. The mixture was concentrated in vacuo, and the residue was purified by flash chromatography (silica gel, hexane–EtOAc) to give a colorless oil; yield: 63.0 mg (0.21 mmol, 84%). IR (ATR): 2977, 1414, 1236, 1019, 952, 806, 725, 702, 466 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.51–7.46 (m, 2 H), 7.39–7.32 (m, 3 H), 4.15–4.01 (m, 4 H), 1.68–1.57 (m, 2 H), 1.30 (t, J = 7.2 Hz, 6 H), 1.05–0.93 (m, 2 H), 0.29 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 137.8, 133.6, 129.3, 128.0, 61.6 (d, J = 7.0 Hz), 20.5, 19.1, 16.5 (d, J = 6.0 Hz), 7.5 (d, J = 9.0 Hz), –3.5. HRMS (ESI): m/z [M+] calcd for C14H25O3PSi: 300.1296; found: 300.1311.
- 49 Xu Y.-H, Wu L.-H, Wang J, Loh T.-P. Chem Commun. 2014; 50: 7195
- 50 Pashikanti S, Calderone JA, Nguyen MK, Sibley CD, Santos WL. Org. Lett. 2016; 18: 2443
- 51 The protosilylation of simple aliphatic or aromatic alkenes such as hex-1-ene and styrene was investigated; however, the corresponding silanes were not obtained (see SI; Scheme S2).