Synthesis 2024; 56(07): 1147-1156
DOI: 10.1055/a-2183-0175
paper
Emerging Trends in Glycoscience

Expedient Synthesis of Superarmed Glycosyl Donors via Oxidative Thioglycosidation of Glycals

Nicholas P. Forsythe
,
Emma R. Mize
,
Gustavo A. Kashiwagi
,
A.V.D. thanks the National Institute of General Medical Sciences (GM111835) and the National Science Foundation (CHE-2147156) for support of this work. N.P.F. was supported by the National Institute of General Medical Sciences (T32, GM141602 grant).


Abstract

Superarmed glycosyl donors have higher reactivity compared to their perbenzylated armed counterparts. Generally, the 2-O-benzoyl-3,4,6-tri-O-benzyl protecting group pattern gives rise to increased reactivity due to an O-2/O-5 cooperative effect. Despite having a high reactivity profile and applicability in many expeditious strategies for glycan synthesis, regioselective introduction of the superarming protecting group pattern is tedious for most sugar series. Reported herein is a streamlined synthetic route to yield superarmed glycosyl donors of the d-gluco and d-galacto series equipped with an ethylthio, phenylthio, p-tolylthio, benzoxazol-2-ylthio, O-allyl, or O-pentenyl anomeric leaving group. This streamlined approach was made possible due to the refinement of the oxidative thioglycosylation reaction of the respective glucal and galactal precursors. The applicability of this approach to the direct formation of disaccharides is also showcased.

Supporting Information



Publication History

Received: 08 August 2023

Accepted after revision: 27 September 2023

Accepted Manuscript online:
27 September 2023

Article published online:
31 October 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Panza M, Pistorio SG, Stine KJ, Demchenko AV. Chem. Rev. 2018; 118: 8105
    • 2a Paulsen H, Lockhoff O. Tetrahedron Lett. 1978; 19: 4027
    • 2b Emmadi M, Kulkarni SS. Nat. Prod. Rep. 2014; 31: 870
    • 2c Manmode S, Sato T, Sasaki N, Notsu I, Hayase S, Nokami T, Itoh T. Carbohydr. Res. 2017; 450: 44
    • 2d Pfrengle F, Seeberger PH. In Protecting Groups: Strategies and Applications in Carbohydrate Chemistry . Vidal S. Wiley-VCH; Weinheim: 2019: 451-472
    • 2e Yalamanchili S, Nguyen T.-A, Zsikla A, Stamper G, DeYong AE, Florek J, Vasquez O, Pohl NL. B, Bennett CS. Angew. Chem. Int. Ed. 2021; 60: 23171
    • 2f Shrestha G, Kashiwagi GA, Stine KJ, Demchenko AV. Carbohydr. Res. 2022; 511: 108482
    • 3a Polyakova SM, Nizovtsev AV, Kuznetskiy RA, Bovin NV. Russ. Chem. Bull. 2015; 64: 973
    • 3b Ágoston K, Streicher H, Fügedi P. Tetrahedron: Asymmetry 2016; 27: 707
    • 3c Jager M, Minnaard AJ. Chem. Commun. 2016; 52: 656
    • 3d Kulkarni SS, Wang CC, Sabbavarapu NM, Podilapu AR, Liao PH, Hung SC. Chem. Rev. 2018; 118: 8025
    • 3e Goekjian PG, Vidal S. In Protecting Groups: Strategies and Applications in Carbohydrate Chemistry . Vidal S. Wiley-VCH; Weinheim: 2019: 109-144
    • 3f Volbeda AG, van der Marel GA, Codée JD. C. In Protecting Groups: Strategies and Applications in Carbohydrate Chemistry . Vidal S. Wiley-VCH; Weinheim: 2019: 1-28
    • 3g Wang T, Demchenko AV. Org. Biomol. Chem. 2019; 17: 4934
    • 4a Mootoo DR, Konradsson P, Udodong U, Fraser-Reid B. J. Am. Chem. Soc. 1988; 110: 5583
    • 4b Fraser-Reid B, Udodong UE, Wu Z, Ottosson H, Merritt JR, Rao CS, Roberts C, Madsen R. Synlett 1992; 927 ; and references cited therein
  • 5 Fraser-Reid B, Wu Z, Andrews CW, Skowronski E. J. Am. Chem. Soc. 1991; 113: 1434
    • 6a Wilson BG, Fraser-Reid B. J. Org. Chem. 1995; 60: 317
    • 6b Douglas NL, Ley SV, Lücking U, Warriner SL. J. Chem. Soc., Perkin Trans. 1 1998; 51
    • 7a Zhang Z, Ollmann IR, Ye XS, Wischnat R, Baasov T, Wong CH. J. Am. Chem. Soc. 1999; 121: 734
    • 7b Fridman M, Solomon D, Yogev S, Baasov T. Org. Lett. 2002; 4: 281
  • 8 Bandara MD, Yasomanee JP, Demchenko AV. In Selective Glycosylations: Synthetic Methods and Catalysts . Bennett CS. Wiley-VCH; Weinheim: 2017: 29-58
  • 9 Zhu T, Boons GJ. Org. Lett. 2001; 3: 4201
  • 10 Kamat MN, Demchenko AV. Org. Lett. 2005; 7: 3215
    • 11a Jensen HH, Pedersen CM, Bols M. Chem. Eur. J. 2007; 13: 7576
    • 11b Pedersen CM, Nordstrom LU, Bols M. J. Am. Chem. Soc. 2007; 129: 9222
    • 11c Pedersen CM, Marinescu LG, Bols M. Chem. Commun. 2008; 2465
    • 11d Heuckendorff M, Pedersen CM, Bols M. Chem. Eur. J. 2010; 16: 13982
    • 12a Romero JA. C, Tabacco SA, Woerpel KA. J. Am. Chem. Soc. 2000; 122: 168
    • 12b Ayala L, Lucero CG, Romero JA. C, Tabacco SA, Woerpel KA. J. Am. Chem. Soc. 2003; 125: 15521
    • 12c Shenoy SR, Woerpel KA. Org. Lett. 2005; 7: 1157
    • 12d Baghdasarian G, Woerpel KA. J. Org. Chem. 2006; 71: 6851
    • 12e Yang MT, Woerpel KA. J. Org. Chem. 2009; 74: 545
    • 13a Mydock LK, Demchenko AV. Org. Lett. 2008; 10: 2103
    • 13b Mydock LK, Demchenko AV. Org. Lett. 2008; 10: 2107
    • 13c Premathilake HD, Mydock LK, Demchenko AV. J. Org. Chem. 2010; 75: 1095
    • 14a Oscarson S. In The Organic Chemistry of Sugars . Levy DE, Fügedi P. CRC/Taylor & Francis; Boca Raton: 2006: 53-88
    • 14b Wang C.-C, Lee J.-C, Luo S.-Y, Kulkarni SS, Huang Y.-W, Lee C.-C, Chang K.-L, Hung S.-C. Nature 2007; 446: 896
  • 15 Wang T, Nigudkar SS, Yasomanee JP, Rath NP, Stine KJ, Demchenko AV. Org. Biomol. Chem. 2018; 16: 3596
  • 16 Shi L, Kim Y.-J, Gin DY. J. Am. Chem. Soc. 2001; 123: 6939
  • 17 Buda S, Gołębiowska P, Mlynarski J. Eur. J. Org. Chem. 2013; 3988
  • 18 deb Kleijne FF. J, Moons SJ, White PB, Boltje TJ. Org. Biomol. Chem. 2020; 18: 1165
  • 19 Izquierdo S, Essafi S, Del Rosal I, Vidossich P, Pleixats R, Vallribera A, Ujaque G, Lledos A, Shafir A. J. Am. Chem. Soc. 2016; 138: 12747
  • 20 Escopy S, Singh Y, Demchenko AV. Org. Biomol. Chem. 2019; 17: 8379
  • 21 Singh Y, Geringer S, Demchenko AV. Chem. Rev. 2022; 122: 11701
  • 22 Singh Y, Demchenko AV. Chem. Eur. J. 2019; 25: 1461
    • 23a Ferrier RJ. J. Chem. Soc., Perkin Trans. 1 1979; 1455
    • 23b Lopez JC, Gomez AM, Velverde S, Fraser-Reid B. J. Org. Chem. 1995; 60: 3851
  • 24 Moteki SA, Usui A, Selvakumar S, Zhang T, Maruoka K. Angew. Chem. Int. Ed. 2014; 53: 11060
  • 25 Timmers CM, van Straten NC. R, van der Marel GA, van Boom JH. J. Carbohydr. Chem. 1998; 17: 471
  • 26 Vernay HF, Rachaman ES, Eby R, Schuerch C. Carbohydr. Res. 1980; 78: 267
  • 27 Grube M, Lee B.-Y, Garg M, Michel D, Vilotijević I, Malik A, Seeberger PH, Varón Silva D. Chem. Eur. J. 2018; 24: 3271
  • 28 Komba S, Terauchi T, Machida S. J. Appl. Glycosci. 2009; 56: 193
  • 29 Tanaka H, Adachi M, Takahashi T. Chem. Eur. J. 2005; 11: 849
  • 30 Patil PS, Cheng TJ, Zulueta MM, Yang ST, Lico LS, Hung SC. Nat. Commun. 2015; 6: 7239
  • 31 Wang C, Wang H, Huang X, Zhang L.-H, Ye X.-S. Synlett 2006; 2846
  • 32 Plé K. Carbohydr. Res. 2003; 338: 1441
  • 33 Mach M, Schlueter U, Mathew F, Fraser-Reid B, Hazen KC. Tetrahedron 2002; 58: 7345
  • 34 Ranade SC, Kaeothip S, Demchenko AV. Org. Lett. 2010; 12: 5628
  • 35 Nguyen HM, Chen Y, Duron SG, Gin DY. J. Am. Chem. Soc. 2001; 123: 8766
  • 36 Stévenin A, Boyer F.-D, Beau J.-M. J. Org. Chem. 2010; 75: 1783
  • 37 Hasty SJ, Kleine MA, Demchenko AV. Angew. Chem. Int. Ed. 2011; 50: 4197
  • 38 Escopy S, Singh Y, Demchenko AV. Org. Biomol. Chem. 2021; 19: 2044