Subscribe to RSS
DOI: 10.1055/a-2182-7614
Rose Bengal Promoted Catalytic Amyloid-β Oxygenation by Sonoactivation
We thank JSPS KAKENHI Grant Numbers JP23H05466 (M.K.), JP21H02602 (Y.S.), JP23H00394 (T.T.), JP18K06653, JP21H02622, JP18K06653, JP21H02622, and JP22H05036 (Y.H.), JP20H05843 (Dynamic Exciton) and 23K06045 (H.M.), JP21K20727 (T.S.), AMED Grant Numbers JP19dm0107106, JP19dm0307030, JP19jm0210058 (Y.S.), and JP22gm6410017 (Y.H.), JST, PRESTO Grant Number JPMJPR2279 (H.M.), and the University of Tokyo Gap Fund Program (T.T.). M.O. and M.Y. acknowledge a JSPS Research Fellowship for Young Scientists.
Dedicated to the memory of Professor Keith Fagnou
Abstract
Catalytic photooxygenation of amyloid-β is a leading therapeutic strategy for the treatment of Alzheimer disease; however, the limited tissue permeability of light hampers its clinical application. We here report an alternative catalytic sonooxygenation strategy to circumvent this problem. Amyloid-β aggregates were oxygenated by using rose bengal as a sonosensitizer under ultrasound irradiation. Structure–activity relationships revealed that xanthene-derived catalysts containing halogen atoms furnished a superior amyloid oxygenation activity.
Key words
Alzheimer disease - amyloid-β - amyloid oxygenation - ultrasound - sonodynamic therapy - sonosensitizationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2182-7614.
- Supporting Information
Publication History
Received: 31 August 2023
Accepted after revision: 27 September 2023
Accepted Manuscript online:
27 September 2023
Article published online:
30 October 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Drew L. Nature 2018; 559: S2
- 2 Knopan DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, Nixon RA, Jones DT. Nat. Rev. Dis. Primers 2021; 7: 33
- 3 Hardy JA, Higgins GA. Science 1992; 256: 184
- 4 Panza F, Lozupone M, Logroscino G, Imbimbo BP. Nat. Rev. Neurol. 2019; 15: 73
- 5a Taniguchi A, Sasaki D, Shiohara A, Iwatsubo T, Tomita T, Sohma Y, Kanai M. Angew. Chem. Int. Ed. 2014; 53: 1382
- 5b Taniguchi S, Shimizu Y, Oisaki K, Sohma Y, Kanai M. Nat. Chem. 2016; 8: 974
- 5c Ni J, Taniguchi A, Ozawa S, Hori Y, Kuninobu Y, Saito T, Saido T, Tomita T, Sohma Y, Kanai M. Chem 2018; 4: 807
- 5d Suzuki T, Hori Y, Sawazaki T, Shimizu Y, Nemoto Y, Taniguchi A, Ozawa S, Sohma Y, Kanai M, Tomita T. Chem. Commun. 2019; 55: 6165
- 5e Nagashima N, Ozawa S, Furuta M, Oi M, Hori Y, Tomita T, Sohma Y, Kanai M. Sci. Adv. 2021; 7: eabc9750
- 5f Umeda H, Sawazaki T, Furuta M, Suzuki T, Kawashima SA, Mitsunuma H, Hori Y, Tomita T, Sohma Y, Kanai M. ACS Chem. Neurosci. 2023; 14: 2710
- 5g Sohma Y, Sawazaki T, Kanai M. Org. Biomol. Chem. 2021; 19: 10017
- 6a Ishida Y, Tanimoto S, Takahashi D, Toshima K. Med. Chem. Commun. 2010; 1: 212
- 6b Li M, Xu C, Ren J, Wang E, Qu X. Chem. Commun. 2013; 49: 11394
- 6c Hirabayashi A, Shindo Y, Oka K, Takahashia D, Toshima K. Chem. Commun. 2014; 50: 9543
- 6d Lee BI, Lee S, Suh YS, Lee JS, Kim A.-k, Kwon O-Y, Yu K, Park CB. Angew. Chem. Int. Ed. 2015; 54: 11472
- 6e Lee BI, Suh YS, Chung YJ, Yu K, Park CB. Sci. Rep. 2017; 7: 7523
- 6f Kang J, Lee SJ. C, Nam JS, Lee HJ, Kang M.-G, Korshavn KJ, Kim H.-T, Cho J, Ramamoorthy A, Rhee H.-W, Kwon T.-H, Lim MH. Chem. Eur. J. 2017; 23: 1645
- 6g Du Z, Yu D, Du X, Scott P, Ren J, Qu X. Chem. Sci. 2019; 10: 10343
- 6h Han J, Lee HJ, Kim KY, Nam G, Chae J, Lim MH. Proc. Natl. Acad. Sci. U. S. A. 2020; 117: 5160
- 6i Bataglioli JC, Gomes LM. F, Maunoir C, Smith JR, Cole HD, McCain J, Sainuddin T, Cameron CG, McFarland SA, Storr T. Chem. Sci. 2021; 12: 7510
- 6j Hong M, Kim M, Yoon J, Lee S.-H, Baik M.-H, Lim MH. JACS Au 2022; 2: 2001
- 7 Ozawa S, Hori Y, Shimizu Y, Taniguchi A, Suzuki T, Wang W, Chiu YW, Koike R, Yokoshima S, Fukuyama T, Takatori S, Sohma Y, Kanai M, Tomita T. Brain 2021; 144: 1884
- 8 Wang X, Jia Y, Wang P, Liu Q, Zheng H. Ultrason. Sonochem. 2017; 37: 592
- 9 Rengeng L, Qianyu Z, Yuehong L, Zhongzhong P, Libo L. Photodiagn. Photodyn. Ther. 2017; 19: 159
- 10a Li J.-h, Song D.-y, Xu G.-y, Huang Z, Yue W. Neurol. Sci. 2008; 29: 229
- 10b Hachimine K, Shibaguchi H, Kuroki M, Yamada H, Kinugasa T, Nakae Y, Asano R, Sakata I, Yamashita Y, Shirakusa T, Kuroki M. Cancer Sci. 2007; 98: 916
- 10c Komori C, Okada K, Kawamura K, Suzuki N, Chida S, Suzuki T. Anticancer Res. 2009; 29: 243
- 10d Suzuki N, Okada K, Chida A, Komori C, Shimada Y, Suzuki T. Anticancer Res. 2007; 27: 4179
- 11 For a precedent on amyloid oxygenation by protoporphyrin IX-modified multifunctional nanoparticles, see: Xu M, Zhou H, Liu Y, Sun J, Xie W, Zhao P, Liu J. ACS Appl. Mater. Interfaces 2018; 10: 32965
- 12a Valenzeno DP, Trudgen J, Hutzenbuhler A, Miline M. Photochem. Photobiol. 1987; 46: 985
- 12b Lenard J, Rabson A, Vanderoef R. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 158
- 12c Bottiroli G, Croce AC, Balzarini P, Locatelli D, Baglioni P, Lo Nostro P, Monici M, Pratesi R. Photochem. Photobiol. 1997; 66: 374
- 12d Talley Watts L, Zheng W, Garling RJ, Frohlich VC, Lechleiter JD. J. Vis. Exp. 2015; 100: e52794
- 12e Martinez JD, Arrieta E, Naranjo A, Monsalve P, Mintz KJ, Peterson J, Arboleda A, Durkee H, Aguilar MC, Pelaez D, Dubovy SR, Miller D, Leblanc R, Amescua G, Parel J.-M. Cornea 2021; 40: 1036
- 13a Mousavi SH, Zhang XD, Sharifi AM, Hersey P. Iran J. Basic Med. Sci. 2006; 9: 216
- 13b Mousavi SH, Tavakko-l-Afshari J, Brook A, Jafari-Anarkooli I. Food Chem. Toxicol. 2009; 47: 855
- 14 Hou R, Liang X, Li X, Zhang X, Ma X, Wang F. Biomater. Sci. 2020; 8: 2526
- 15 Chen H, Zhou X, Gao Y, Zheng B, Tang F, Huang J. Drug Discovery Today 2014; 19: 502
- 16 Matsukawa R, Yamane M, Kanai M. Chem. Rec. 2023; e202300198
- 17 Under the optimized conditions (5 W/cm2, 20 min), the temperature rose by approximately 15 °C. However, under attenuated conditions (e.g., 1 W/cm2, 10 min), the temperature rise was almost negligible, whereas the oxygenation yield did not significantly decrease. We therefore conclude that the contribution of temperature increase to the oxygenation reaction is minor.
- 18 Lohse D. Nature 2005; 33: 434
- 19a Vazquez G, Camara C, Putterman S, Weninger K. Opt. Lett. 2001; 26: 575
- 19b Flannigan DJ, Suslick KS. Nature 2005; 434: 52
- 20 Matula TJ, Roy RA, Mourad PD, McNamara WB. III, Suslick KS. Phys. Rev. Lett. 1995; 75: 2602
- 21 Beguin E, Shrivastava S, Dezhkunov NV, Mchale AP, Callan JF, Stride E. ACS Appl. Mater. Interfaces 2019; 11: 19913
- 22 Lee JS, Lee BI, Park CB. Biomaterials 2015; 38: 43
- 23 For the preprint version of this manuscript, see: Atsumi W, Kawabata K, Yamane M, Oi M, Mitsunuma H, Sohma Y, Hori Y, Tomita T, Kanai M. ChemRxiv 2023; preprint; DOI
For representative examples, see:
For the use of sonosensitizers to singlet oxygen generation, see:
For other biological applications of rose bengal, see:
Although rose bengal has been reported to induce cancer cell death at 100 μM, the concentration used in this study was 10 μM, which is outside the range of toxicity. For the toxicity of rose bengal, see:
For representative papers investigating the mechanism of sonoluminescence, see: