Synthesis 2024; 56(01): 143-150
DOI: 10.1055/a-2172-8329
paper

New Route to Direct Synthesis of Symmetrical Ureas from Carboxylic Acids

Daniel Jahani
a   Laboratori de Química Farmacèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII, 27–31 08028 Barcelona, Spain   URL: mdpujol@ub.edu
,
Hasna Yassine
b   Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, 23000 Beni-Mellal, Morocco
,
Mostafa Khouili
b   Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, 23000 Beni-Mellal, Morocco
,
a   Laboratori de Química Farmacèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII, 27–31 08028 Barcelona, Spain   URL: mdpujol@ub.edu
› Author Affiliations
Acknowledgment to AGAUR for financial support.


Abstract

The first method for the direct conversion of carboxylic acids into ureas has been developed. The classical procedures described for the formation of ureas from carboxylic acids require two steps, preparation of the isocyanate followed by its aminolysis. In this work, aryl carboxylic and arylalkyl carboxylic acids have been transformed into symmetric ureas in a single step using DPPA or sodium azide as nitrogen source. The addition of water (method A) or the presence of solvent water (method B) was essential for the formation of symmetrical ureas from the corresponding carboxylic acids. The corresponding ureas have been obtained in good to excellent yields of 46 to 100%. This procedure is compatible with different substituents present in the starting carboxylic acid.

Supporting Information



Publication History

Received: 13 July 2023

Accepted after revision: 08 September 2023

Accepted Manuscript online:
08 September 2023

Article published online:
23 October 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wöhler F. Ann. Phys. 1828; 88: 253
    • 2a Ghosh AK, Brindisi M. J. Med. Chem. 2020; 63: 2751
    • 2b Ronchetti R, Moroni G, Carotti A, Gioiello A, Camaioni E. RSC Med. Chem. 2021; 12: 1046
  • 3 Wiedemar N, Hanser DA, Mäser P. Antimicrob. Agents Chemother. 2020; 64: e01168-19
  • 4 Yang R, Dong S, Zhang J, Zhu S, Miao G, Zhang B. Mol. Cell Biochem. 2023; 478: 1031
  • 5 Ricci A, Rolli E. Plants 2020; 9: 321
  • 6 Gallou I. Org. Prep. Proced. Int. 2007; 39: 355
  • 7 Lombardino JG, Lowe JA. Nat. Rev. Drug Discov. 2004; 3: 853
  • 8 Regan J, Breitfelder S, Cirillo P, Gilmore T, Graham AG, Hickey E, Klaus B, Madwed J, Moriak M, Moss N, Pargellis C, Pav S, Proto A, Swinamer A, Tong L, Torcellini C. J. Med. Chem. 2002; 45: 2994
  • 9 Ghosh AK, Gemma S. Structure-Based Design of Drugs and Other Bioactive Molecules: Tools and Strategies. Wiley-VCH; Weinheim: 2014
  • 10 Ghosh AK, Brindisi M. J. Med. Chem. 2020; 63: 2751
  • 11 Kilic-Kurt Z, Ozmen N, Bakar-Ates F. Bioorg. Chem. 2020; 101: 104028
    • 12a Sigmund H, Pfleiderer W. Helv. Chim. Acta 1994; 77: 1267
    • 12b Gallou I, Eriksson M, Zeng X, Senanayake C, Farina V. J. Org. Chem. 2005; 70: 6960
    • 13a Guichard G, Semetey V, Didierjean C, Aubry A, Briand J.-P, Rodriguez M. J. Org. Chem. 1999; 64: 8702
    • 13b Nowick JS, Powell NA, Nguyen TM, Noronha G. J. Org. Chem. 1992; 57: 7364
    • 13c Bigi F, Maggi R, Sartori G. Green Chem. 2000; 2: 140
    • 13d Raiford LC, Freyermuth HB. J. Org. Chem. 1943; 8: 230
    • 14a Matzen L, van Amsterdam C, Rautenberg W, Greiner HE, Harting J, Seyfried CA, Bottcher H. J. Med. Chem. 2000; 43: 1149
    • 14b Patel M, Kaltenbach RF, Nugiel DA, McHugh RJ, Jadhav PK, Bacheler LT, Cordova BC, Klabe RM, Erickson-Viitanen S, Garber S, Reid C, Seitz SP. Bioorg. Med. Chem. Lett. 1998; 8: 1077
    • 14c Hammill JT, Bhasin D, Scott DC, Min J, Chen Y, Lu Y, Yang L, Kim HS, Connelly MC, Hammill C, Holbrook G, Jeffries C, Singh B, Schulman BA, Guy RK. J. Med. Chem. 2018; 61: 2694
  • 15 Katritzky AR, Pleynet DP. M, Yang BZ. J. Org. Chem. 1997; 62: 4155
  • 16 Artuso E, Degani L, Fochi R, Magistris C. Synthesis 2007; 3497
  • 17 Lebel H, Leogane O. Org. Lett. 2006; 8: 5717
  • 18 Ghosh AK, Brindisi B, Sarkar A. ChemMedChem 2018; 13: 2351
    • 19a Shioiri T, Ninomiya S, Yamada S. J. Am. Chem. Soc. 1972; 94: 6203
    • 19b Ninomiya K, Shioiri T, Yamada S. Tetrahedron 1974; 30: 2151
  • 20 Kulkarni AR, Garai S, Thakur GA. J. Org. Chem. 2017; 82: 992
  • 21 Yassine H, Bouali J, Oumessaoud A, Ourhzif EM, Hamri S, Hafid A, Khouili M, Pujol MD. Synthesis 2021; 53: 1971
  • 22 Neville CF, Grundon MF, Ramachandran VN, Reisch J. J. Chem. Soc., Perkin Trans. 1 1991; 259
  • 23 Ponpandian T, Muthusubramanian S. Tetrahedron Lett. 2012; 53: 59
  • 24 Perveen S, Hai SM. A. H, Khan RA, Khan KM, Afza N, Sarfaraz TB. Synth. Commun. 2005; 35: 1663
  • 25 Jimenez-Blanco JL, Saitz Barría C, Benito JM, Ortiz Mellet C, Fuentes J, Santoyo-González F, García Fernández JM. Synthesis 1999; 1907
    • 26a Clayden J, Lemiègre L, Pickworth M, Jones L. Org. Biomol. Chem. 2008; 6: 2908
    • 26b Xu M, Jupp AR, Ong MS. E, Burton KI, Chitnis SS, Stephan DW. Angew. Chem. Int. Ed. 2019; 58: 5707
  • 27 Yao O, Liu F, Chen J, Li Y, Cui J, Qiao C. Bioorg. Med. Chem. Lett. 2016; 26: 1386
  • 28 Chandran SK, Nath NK, Cherukuvada S, Nangia A. J. Mol. Struct. 2010; 96899
  • 29 Orito K, Miyazawa M, Nakamura T, Horibata A, Ushito H, Nagasaki H, Yuguchi M, Yamashita S, Yamazaki T, Tokuda M. J. Org. Chem. 2006; 71: 5951