Synlett, Table of Contents Synlett 2024; 35(03): 325-329DOI: 10.1055/a-2153-6687 cluster Organic Chemistry Under Visible Light: Photolytic and Photocatalytic Organic Transformations Visible-Light-Promoted Synthesis of Vinyloxaziridines from Conjugated Carbonyls Authors Brooke E. Austin Ryan P. Palner Elissa M. Tobias Rufai Madiu Erin L. Doran Jenna M. Doran Amari M. Howard James L. Stroud Morgan E. Rossi Dylan A. Moskovitz Dominic A. Rivera Michael D. Mullen Amy H. Zinsky Rose A. Rosario Gustavo Moura-Letts∗ Recommend Article Abstract Buy Article(opens in new window) All articles of this category(opens in new window) Abstract We report the first visible-light-promoted synthesis of vinyloxaziridines from simple conjugated nitrones. We have found that vinyl nitrones formed by the condensation reaction between conjugated carbonyls and hydroxylamines undergo visible-light-promoted energy-transfer isomerization to the respective vinyloxaziridines in very high yields and selectivities. The reaction scope expands to a large array of substitution patterns, and evidence indicates that the proposed energy-transfer pathway is the predominant mechanism for this transformation. Key words Key wordsphotoisomerization - oxaziridines - nitrones - visible light - single-electron transfer Full Text References References and Notes 1a Williamson KS, Michaelis DJ, Yoon TP. Chem. Rev. 2014; 114: 8016 1b Wang H.-H, Wang X.-D, Yin G.-F, Zeng Y.-F, Chen J, Wang Z. ACS Catal. 2022; 12: 2330 1c Sakakibara Y, Murakami K. ACS Catal. 2022; 12: 1857 1d Karmakar A, Yu P.-C, Shajan FJ, Chatare VK, Sabbers WA, Sproviero EM, Andrade RB. Org. Lett. 2022; 24: 6548 1e Behnke NE, Kielawa R, Kwon D.-H, Ess DH, Kürti L. Org. Lett. 2018; 20: 8064 1f Ghosh A, Mandal S, Chattaraj PK, Banerjee P. Org. Lett. 2016; 18: 4940 1g Motiwala HF, Gulgeze B, Aubé J. J. Org. Chem. 2012; 77: 7022 1h Williamson KS, Yoon TP. J. Am. Chem. Soc. 2010; 132: 4570 1i Williamson KS, Yoon TP. J. Am. Chem. Soc. 2012; 134: 12370 2a Vidal J, Damestoy S, Guy L, Hannachi J.-C, Aubry A, Collet A. Chem. Eur. J. 1997; 3: 1691 2b Davis FA, Abdul-Malik NF, Awad SB, Harakal ME. Tetrahedron Lett. 1981; 22: 917 2c Houk KN, Liu J, DeMello NC, Condroski KR. J. Am. Chem. Soc. 1997; 119: 10147 2d Davis FA, Stringer OD, Billmers JM. Tetrahedron Lett. 1983; 24: 1213 2e Davis FA, Sheppard AC. Tetrahedron Lett. 1988; 29: 4365 2f Davis FA, Jenkins LA, Billmers RL. J. Org. Chem. 1986; 51: 1033 2g Arnone A, Pregnolato M, Resnati G, Terreni M. J. Org. Chem. 1997; 62: 6401 2h Kummer DA, Li D, Dion A, Myers AG. Chem. Sci. 2011; 2: 1710 3a Aubé J. Chem. Soc. Rev. 1997; 26: 269 3b Suda K, Sashima M, Izutsu M, Hino F. J. Chem. Soc., Chem. Commun. 1994; 949 3c Leung CH, Voutchkova AM, Crabtree RH, Balcells D, Eisenstein O. Green Chem. 2007; 9: 976 4a Allen CP, Benkovics T, Turek AK, Yoon TP. J. Am. Chem. Soc. 2009; 131: 12560 4b Partridge KM, Guzei IA, Yoon TP. Angew. Chem. Int. Ed. 2010; 49: 930 4c Bnekovics T, Du J, Guzei IA, Yoon TP. J. Org. Chem. 2009; 74: 5545 5a Michaelis DJ, Shaffer CJ, Yoon TP. J. Am. Chem. Soc. 2007; 129: 1866 5b Michaelis DJ, Ischay MA, Yoon TP. J. Am. Chem. Soc. 2008; 130: 6610 5c Michaelis DJ, Williamson KS, Yoon TP. Tetrahedron 2009; 65: 5118 6 Emmons WD. J. Am. Chem. Soc. 1957; 79: 5739 7a Lattes A, Oliveros E, Riviere M, Belzeck C, Mostowicz D, Abramskj W, Piccini-Leopardi C, Germain G, Van Meerssche M. J. Am. Chem. Soc. 1982; 104: 3929 7b Aubé J, Burgett PM, Wang YG. Tetrahedron Lett. 1988; 29: 151 8a Toda F, Tanaka K. Chem. Lett. 1987; 2283 8b Bigot B, Roux D, Sevin A, Devaquet A. J. Am. Chem. Soc. 1979; 101: 2560 9 Splitter JS, Calvin M. J. Am. Chem. Soc. 1979; 101: 7329 10a Ogata Y, Sawaki Y. J. Am. Chem. Soc. 1973; 95: 4687 10b Lin Y.-M, Miller J. J. Org. Chem. 2001; 66: 8282 10c Partridge KM, Anzovino ME, Yoon TP. J. Am. Chem. Soc. 2008; 130: 2920 11a Kawade RK, Liu R.-S. Angew. Chem. Int. Ed. 2017; 56: 2035 11b Cornil J, Gonnard L, Bensoussan C, Serra-Muns A, Gnamm C, Commandeur C, Commandeur M, Reymond S, Guérinot A, Cossy J. Acc. Chem. Res. 2015; 48: 761 11c Chakrabarty S, Chatterjee I, Wibbeling B, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2014; 53: 5964 11d Zhang G.-L, Rücker G, Breitmaier E, Nieger M, Mayer R, Steinbeck C. Phytochemistry 1995; 40: 299 11e Xie J, Xue Q, Jin H, Li H, Cheng Y, Zhu C. Chem. Sci. 2013; 4: 1281 11f Koyama K, Hirasawa Y, Nugroho AE, Hosoya T, Hoe T.-C, Chan K.-L, Morita H. Org. Lett. 2010; 12: 4188 11g Hong AY, Vanderwal CD. J. Am. Chem. Soc. 2015; 137: 7306 11h Krenske EH, Patel A, Houk KN. J. Am. Chem. Soc. 2013; 135: 17638 12a Becker DA, Ley JJ, Echegoyen L, Alvarado R. J. Am. Chem. Soc. 2002; 124: 4678 12b Rosselin M, Choteau F, Zéamari K, Nash KM, Das A, Lauricella R, Lojou E, Tuccio B, Villamena FA, Durand G. J. Org. Chem. 2014; 79: 6615 13 Zhou X, Huang K, Wang Y, Zhang Z, Liu Y, Hou Q, Yang X, Pui Man Hoi M. Front. Pharmacol. 2023; 14: 1082602 14 Saini P, Chattopadhyay A. RSC Adv. 2015; 5: 22148 15 Christiansen D, Jørgensen KA, Hazell RG. J. Chem. Soc., Perkin Trans. 1 1990; 2391 16 Polášek M, Tureček F. J. Am. Chem. Soc. 2000; 122: 525 17a Haun GJ, Paneque AN, Almond D, Austin BE, Moura-Letts G. Org. Lett. 2019; 21: 1388 17b Trieu P, Filkin WH, Pinarci A, Tobias EM, Madiu R, Dellosso B, Roldan J, Das P, Austin BE, Moura-Letts G. ChemPhotoChem 2023; 7: e202200277 17c Pinarci A, Daniecki N, TenHoeve TM, Dellosso B, Madiu R, Mejia L, Bektas SE, Moura-Letts G. Chem. Commun. 2022; 58: 4909 17d Lizza JR, Moura-Letts G. Synthesis 2017; 49: 1231 17e Bakanas IJ, Moura-Letts G. Eur. J. Org. Chem. 2016; 5345 17f Lizza JR, Patel SV, Yang CF, Moura-Letts G. Eur. J. Org. Chem. 2016; 5160 17g Neuhaus WC, Moura-Letts G. Tetrahedron Lett. 2016; 57: 4974 17h Quinn DJ, Haun GJ, Moura-Letts G. Tetrahedron Lett. 2016; 57: 3844 17i Beebe AW, Dohmeier EF, Moura-Letts G. Chem. Commun. 2015; 51: 13511 18a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322 18b Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898 18c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075 18d Beatty JW, Stephenson CR. J. Acc. Chem. Res. 2015; 48: 1474 18e Pitre SP, McTiernan CD, Scaiano JC. Acc. Chem. Res. 2016; 49: 1320 18f Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035 18g Zhou Q.-Q, Zou Y.-Q, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2018; 58: 1586 19 Quinn DJ, Tumbelty LN, Moscarello EM, Paneque AN, Zinsky AH, Russ MP, Haun GJ, Cinti NA, Dare RM, Moura-Letts G. Tetrahedron Lett. 2017; 58: 4682 20 Rosselin M, Tuccio B, Pério P, Fabre P.-L, Durand G. Electrochim. Acta 2016; 193: 231 21 General protocol for synthesis of vinyloxaziridines from vinylnitrones: A 50 mL round-bottomed flask equipped with a magnetic stirrer was charged with benzene (20 mL) and the appropriate vinyl nitrone (1 mmol, 1 equiv). The mixture was exposed to a white LED, and the reaction was monitored by TLC. The resulting mixture was purified by chromatography (silica gel). 2-Benzyl-3-[(E)-2-phenylvinyl]oxaziridine (2d): Prepared from nitrone 1d (0.1 mmol) by the general protocol and purified by automated flash chromatography [silica gel (10 g cartridge), heptanes–EtOAc (20:1 to 1:1, 14 mL/min, 12 min)] as a clear oil; yield: 23 mg (98%); TLC: Rf 0.58 (heptanes–EtOAc, 3:1). IR (thin film) 3104, 3041, 2992, 1654, 1520, 1498, 1464, 1281, 1201 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.47–7.32 (m, 10 H), 7.01 (d, J = 16.0 Hz, 1 H), 5.98 (dd, J = 16.0, 7.1 Hz, 1 H), 4.40 (d, J = 7.1 Hz, 1 H), 4.06 (d, J = 8.0 Hz, 1 H), 3.90 (d, J = 8.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 138.5, 135.3, 135.2, 128.9, 128.8, 128.7, 128.6, 127.9, 126.9, 124.2, 80.9, 65.5. ESI-MS: m/z (%): (pos.) 238.1 ([M + H]+, 100); (neg) 236.1 ([M – H]–, 100). HRMS (ESI): m/z [M + H]+ calcd for C16H16NO: 238.30945; found: 238.30968. Absolute difference: 0.96 ppm. Supplementary Material Supplementary Material Supporting Information (PDF)