Synlett 2023; 34(20): 2481-2485
DOI: 10.1055/a-2145-5986
cluster
Special Issue Dedicated to Prof. Hisashi Yamamoto

Copper-Catalyzed Construction of Amide Linkages via Coupling between Unactivated Acids and Amines

Ajijur Rahaman
a   Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
,
Sukalyan Bhadra
a   Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
› Author Affiliations
We sincerely thank Council of Scientific and Industrial Research, India (CSIR) for funding through the Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSMCRI) Project Nos. MLP 0028, MLP 0067, and a SRF to A.R. We also thank the Science and Engineering Research Board (SERB) for funding through Grant no. CRG/2022/003868.


Dedicated to Professor Hisashi Yamamoto on the occasion of his 80th birthday

Abstract

Traditional amide linkage forming reactions by the coupling between an acid and an amine rely primarily on triggering the carboxylic acid counterpart with (over)stoichiometric activating agent(s) and generate unacceptable quantity of nondisposable waste, leading to poor atom economy. Herein, we report an efficient catalytic amide synthesis that proceeds through the in situ activation of the amine counterpart in the form of a reactive N-formyl amine species. The strategy gives an expedient access to an array of structurally varied amides, including dipeptides, from numerous genre of acids and amines without producing stoichiometric solid wastes.

Supporting Information



Publication History

Received: 13 June 2023

Accepted after revision: 31 July 2023

Accepted Manuscript online:
31 July 2023

Article published online:
14 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For a review, see:
    • 1a Montalbetti CA. G. N, Falque V. Tetrahedron 2005; 61: 10827
    • 1b Carey JS, Laffan D, Thomson C, Williams MT. Org. Biomol. Chem. 2006; 4: 2337
    • 1c Pattabiraman VR, Bode JW. Nature 2011; 480: 471
    • 1d Lanigan RM, Sheppard TD. Eur. J. Org. Chem. 2013; 7453
    • 1e Lundberg H, Tinnis F, Selander N, Adolfsson H. Chem. Soc. Rev. 2014; 43: 2714
    • 1f Todorovic M, Perrin DM. Peptide Sci. 2020; 112: e24210
  • 2 Smith MB, March J. In March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 5th ed. Wiley-Interscience; New York: 2000: 508-510
    • 3a Han SY, Kim YA. Tetrahedron 2004; 60: 2447
    • 3b Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
    • 3c El-Faham A, Albericio F. Chem. Rev. 2011; 111: 6557
    • 3d Hanna CC, Kriegesmann J, Dowman LJ, Becker CF. W, Payne RJ. Angew. Chem. Int. Ed. 2022; 61: e202111266

      For an overview, see:
    • 4a Allen CL, Williams JM. J. Chem. Soc. Rev. 2011; 40: 3405
    • 4b Roy S, Roy S, Gribble GW. Tetrahedron 2012; 68: 9867

      For selected examples, see:
    • 5a Yasui Y, Tsuchida S, Miyabe H, Takemoto Y. J. Org. Chem. 2007; 72: 5898
    • 5b Bantreil X, Fleith C, Martinez J, Lamaty F. ChemCatChem 2012; 4: 1922
    • 5c Gaspa S, Porcheddu A, De Luca L. Org. Biomol. Chem. 2013; 11: 3803
    • 5d Kotha SS, Badigenchala S, Sekar G. Adv. Synth. Catal. 2015; 357: 1437
    • 5e Wang P, Xia J, Gu Y. Tetrahedron Lett. 2015; 56: 7120
    • 5f Gu J, Fang Z, Yang Y, Yang Z, Wan L, Li X, Wei P, Guo K. RSC Adv. 2016; 6: 89413
    • 5g Gu J, Fang Z, Liu C, Li X, Wei P, Guo K. RSC Adv. 2016; 6: 72121
    • 5h Shamsabadi A, Chudasama V. Org. Biomol. Chem. 2017; 15: 17
    • 5i Pandey G, Koley S, Talukdar R, Sahani PK. Org. Lett. 2018; 20: 5861
    • 5j Spiliopoulou N, Constantinou CT, Triandafillidi I, Kokotos CG. Synthesis 2020; 52: 3219
    • 6a Ishihara K, Ohara S, Yamamoto H. J. Org. Chem. 1996; 61: 4196
    • 6b Gernigon N, Al-Zoubi RM, Hall DG. J. Org. Chem. 2012; 77: 8386
    • 6c Gu L, Lim J, Cheong JL, Lee SS. Chem. Commun. 2014; 50: 7017
    • 6d Ishihara K, Lu Y. Chem. Sci. 2016; 7: 1276
    • 6e Al-Zoubi RM, Al-Jammal WK, McDonald R. New J. Chem. 2020; 44: 3612
    • 7a Allen CL, Chhatwal AR, Williams JM. J. Chem. Commun. 2012; 48: 666
    • 7b Lundberg H, Tinnis F, Adolfsson H. Chem. Eur. J. 2012; 18: 3822
    • 7c Lundberg H, Adolfsson H. ACS Catal. 2015; 5: 3271
    • 7d Ali MA, Siddiki SM. A. H, Kon K, Shimizu KI. ChemCatChem 2015; 7: 2705
    • 7e Krause T, Baader S, Erb B, Goossen LJ. Nat. Commun. 2016; 7: 11732
    • 7f Lundberg H, Tinnis F, Zhang J, Algarra AG, Himo F, Adolfsson H. J. Am. Chem. Soc. 2017; 139: 2286
    • 7g Muramatsu W, Tsuji H, Yamamoto H. ACS Catal. 2018; 8: 2181
    • 7h Lundberg H, Tinnis F, Adolfsson H. Appl. Organomet. Chem. 2019; 33: e5062
    • 7i De Azambuja F, Parac-Vogt TN. ACS Catal. 2019; 9: 10245
    • 7j Wang H, Dong W, Hou Z, Cheng L, Li X, Huang L. Appl. Organomet. Chem. 2020; 34: e5568
    • 8a Lenstra DC, Rutjes FP. J. T, Mecinović J. Chem. Commun. 2014; 50: 5763
    • 8b Nguyen TV, Lyons DJ. M. Chem. Commun. 2015; 51: 3131
    • 8c Gangireddy P, Patro V, Lam L, Morimoto M, Liebeskind LS. J. Org. Chem. 2017; 82: 3513
    • 8d Mishra AK, Parvari G, Santra SK, Bazylevich A, Dorfman O, Rahamim J, Eichen Y, Szpilman AM. Angew. Chem. Int. Ed. 2021; 60: 12406
    • 8e Bourboula A, Mountanea OG. Krasakis G, Mantzourani C, Kokotou MG, Kokotos CG, Kokotos G. Eur. J. Org. Chem. 2023; 26: e202300008
    • 8f Mountanea OG, Psathopoulou D, Mantzourani C, Kokotou MG, Routsi EA, Tzeli D, Kokotos CG, Kokotos G. Chem. Eur. J. 2023; 29: e2023005

      For reviews on DMF as a reagent, see:
    • 9a Muzart J. Tetrahedron 2009; 65: 8313
    • 9b Abu-Shanab FA, Sherif SM, Mousa SA. S. J. Heterocycl. Chem. 2009; 46: 801
    • 9c Ding S, Jiao N. Angew. Chem. Int. Ed. 2012; 51: 9226
    • 9d Verma PK, Vishwakarma RA, Sawant SD. Asian J. Org. Chem. 2019; 8: 777
    • 10a Johansson MJ, Andersson KH. O, Kann N. J. Org. Chem. 2008; 73: 4458
    • 10b Suchý MA, Elmehriki AH, Hudson RH. E. Org. Lett. 2011; 13: 3952
    • 11a Gupta A, Rahaman A, Bhadra S. Org. Lett. 2019; 21: 6164
    • 11b Kumar J, Rahaman A, Singh AK, Bhadra S. Chem. Asian J. 2020; 15: 673
    • 11c Gupta A, Kumar J, Rahaman A, Singh AK, Bhadra S. Tetrahedron 2021; 98: 132415
    • 11d Rahaman A, Singh AK, Gupta A, Bhadra A. Eur. J. Org. Chem. 2021; 2198
    • 11e Singh AK, Kumar J, Bhadra S. J. Org. Chem. 2022; 87: 1512
    • 11f Rahaman A, Shinde RD, Bhadra S. J. Org. Chem. 2023; 88: 1884
  • 12 Mohebali H, Mahjoub AR, Karimi M, Heydari A. Appl. Organomet. Chem. 2019; 33: e4822
  • 14 Compd 10a was presynthesized by a literature procedure: Sonawane RB, Rasal NK, Bhange DS, Jagtap SV. ChemCatChem 2018; 10: 3907
  • 15 For the activation of an amine via mixed (carbamic) anhydride, see: Suppo J.-S, Subra G, Bergès M, de Figueiredo RM, Campagne J.-M. Angew. Chem. Int. Ed. 2014; 53: 5389