Synthesis 2023; 55(22): 3851-3861
DOI: 10.1055/a-2122-3731
paper

Direct Organocatalytic Asymmetric para C–H Aminoalkylation of Aniline Derivatives Affording Diarylmethylamines

Cheng-Long Wang
a   School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. of China
b   Affiliated Fengxian Hospital, Southern Medical University, Shanghai 201499, P. R. of China
,
Yong-Ling Li
a   School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. of China
,
Le Wang
c   School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. of China
,
Xun-Hui Wang
c   School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. of China
,
Jia Zhou
c   School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. of China
,
He-Yuan Bai
c   School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. of China
,
Tong-Mei Ding
c   School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. of China
,
Zhen-Liang Sun
b   Affiliated Fengxian Hospital, Southern Medical University, Shanghai 201499, P. R. of China
› Author Affiliations
This work was supported by the Innovation Fund (2019A005), the NSFC (22071147 and 81872418), Shanghai Scientific and Technological Innovation Action Plan (21S11902000), and the Transforming Medicine Cross Research Fund of Shanghai Jiao Tong University (YG2022QN032).


Abstract

An efficient method to directly catalyze asymmetric para C–H aminoalkylation of aniline derivatives to prepare chiral diarylmethylamine system was developed. Aniline derivatives underwent an enantioselective aminoalkylation in the presence of chiral phosphoric acid, affording a series of optically active diarylmethylamine products in good yields and enantioselectivities (73% yield, 91% ee). Furthermore, this method could be used to prepare the key intermediate of chiral drug levocetirizine.

Supporting Information



Publication History

Received: 09 May 2023

Accepted after revision: 03 July 2023

Accepted Manuscript online:
04 July 2023

Article published online:
16 August 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Hu LA, Zhang Y, Zhang QW, Yin Q, Zhang X. Angew. Chem. Int. Ed. 2020; 59: 5321
  • 2 Curran MP, Scott LJ, Perry CM. Drugs 2004; 64: 523
  • 3 Mouridsen H, Gershanovich M, Sun Y, Pérez-Carrión R, Boni C, Monnier A, Apffelstaedt J, Smith R, Sleeboom HP, Jaenicke F, Pluzanska A, Dank M, Becquart D, Bapsy PP, Salminen E, Snyder R, Chaudri-Ross H, Lang R, Wyld P, Bhatnagar A. J. Clin. Oncol. 2003; 21: 2101
    • 4a Naito R, Yonetoku Y, Okamoto Y, Toyoshima A, Ikeda K, Takeuchi M. J. Med. Chem. 2005; 48: 6597
    • 4b Huang Y, Wang L, Li J, Qiu H, Leung P.-H. ACS Omega 2020; 5: 15936
  • 5 Kim Y, Kwon YI, Kim S.-G. Synthesis 2019; 52: 281
  • 6 Hermanns N, Dahmen S, Bolm C, Bräse S. Angew. Chem. Int. Ed. 2002; 41: 3692
    • 7a Hayashi T, Ishigedani M. J. Am. Chem. Soc. 2000; 122: 976
    • 7b Oi S, Moro M, Kawanishi T, Inoue Y. Tetrahedron Lett. 2004; 45: 4855

      For selected examples of asymmetric synthesis of chiral diarylmethylamines through imine addition, see:
    • 8a Kuriyama M, Soeta T, Hao X, Chen Q, Tomioka K. J. Am. Chem. Soc. 2004; 126: 8128
    • 8b Duan H.-F, Jia Y.-X, Wang L.-X, Zhou Q.-L. Org. Lett. 2006; 8: 2567
    • 8c Jagt RB. C, Toullec PY, Geerdink D, de Vries JG, Feringa BL, Minnaard AJ. Angew. Chem. Int. Ed. 2006; 45: 2789
    • 8d Shao C, Yu H.-J, Wu N.-Y, Feng C.-G, Lin G.-Q. Org. Lett. 2010; 12: 3820
    • 8e Chen CC, Gopula B, Syu JF, Pan JH, Kuo TS, Wu PY, Henschke JP, Wu HL. J. Org. Chem. 2014; 79: 8077
    • 8f Yasukawa T, Kuremoto T, Miyamura H, Kobayashi S. Org. Lett. 2016; 18: 2716
    • 9a Tokunaga N, Otomaru Y, Okamoto K, Ueyama K, Shintani R, Hayashi T. J. Am. Chem. Soc. 2004; 126: 13584
    • 9b Otomaru Y, Tokunaga N, Shintani R, Hayashi T. Org. Lett. 2005; 7: 307
    • 9c Hao X, Kuriyama M, Chen Q, Yamamoto Y, Yamada K.-i, Tomioka K. Org. Lett. 2009; 11: 4470
    • 9d Okamoto K, Hayashi T, Rawal VH. Chem. Commun. 2009; 4815
    • 9e Jiang T, Chen WW, Xu MH. Org. Lett. 2017; 19: 2138
    • 10a Ma G.-N, Zhang T, Shi M. Org. Lett. 2009; 11: 875
    • 10b Dai H, Lu X. Tetrahedron Lett. 2009; 50: 3478
    • 10c Yang Z, Ni Y, Liu R, Song K, Lin S, Pan Q. Tetrahedron Lett. 2017; 58: 2034
    • 10d Song K, Wen M, Shen K, Fan C, Yang Z, Lin S, Pan Q. Tetrahedron Lett. 2021; 72: 153057
    • 11a Nguyen TB, Bousserouel H, Wang Q, Guéritte F. Adv. Synth. Catal. 2011; 353: 257
    • 11b Kong D, Li M, Zi G, Hou G, He Y. J. Org. Chem. 2016; 81: 6640
    • 11c Abdine RA. A, Hedouin G, Colobert F, Wencel-Delord J. ACS Catal. 2021; 11: 215

      For para C–H functionalization of aniline derivatives, see:
    • 12a Gathergood N, Zhuang W, Jørgensen KA. J. Am. Chem. Soc. 2000; 122: 12517
    • 12b Paras NA, MacMillan DW. C. J. Am. Chem. Soc. 2002; 124: 7894
    • 12c Jia S, Xing D, Zhang D, Hu W. Angew. Chem. Int. Ed. 2014; 53: 13098
    • 12d Xu B, Li M.-L, Zuo X.-D, Zhu S.-F, Zhou Q.-L. J. Am. Chem. Soc. 2015; 137: 8700
    • 12e Chen J, Zou L, Zeng C, Zhou Y, Fan B. Org. Lett. 2018; 20: 1283
    • 12f Zhou J, Zhu GD, Wang L, Tan FX, Jiang W, Ma ZG, Kang JC, Hou SH, Zhang SY. Org. Lett. 2019; 21: 8662
    • 12g Liu C, Tan FX, Zhou J, Bai HY, Ding TM, Zhu GD, Zhang SY. Org. Lett. 2020; 22: 2173
    • 13a Ram S, Spicer LD. Synth. Commun. 1987; 17: 415
    • 13b Doyle MP, Siegfried B, Dellaria JF. Jr. J. Org. Chem. 1977; 42: 2426
    • 13c O’Brien PA, Osborne S, Parker D. J. Chem. Soc., Perkin Trans. 1 1998; 2519
    • 14a Pflum DA, Krishnamurthy D, Han Z, Wald SA, Senanayake CH. Tetrahedron Lett. 2002; 43: 923
    • 14b Opalka CJ, Dambra TE, Faccone JJ, Bodson G, Cossement E. Synthesis 1995; 766