CC BY 4.0 · Synlett 2023; 34(18): 2097-2102
DOI: 10.1055/a-2117-9878
cluster
Modern Boron Chemistry: 60 Years of the Matteson Reaction

Pd-Catalyzed Homologation of Arylboronic Acids as a Platform for the Diversity-Oriented Synthesis of Benzylic C–X Bonds

Kane A. C. Bastick
,
K.A.C.B thanks the Engineering and Physical Sciences Research Council (EPSRC, Grant Number EP/W007517) and the University of St Andrews for a PhD studentship. A.J.B.W. thanks the Leverhulme Trust for a Research Fellowship and the EPSRC Programme Grant ‘Boron: Beyond the Reagent’ for support.


Dedicated to Prof. Donald S. Matteson on the 60th anniversary of the reaction that bears his name.

Abstract

We report a synthetic platform for the formation of benzylic C–X bonds. Benzylboronic acid pinacol (Bpin) esters are useful synthetic intermediates but are commercially uncommon, leading to preparations that typically rely upon stoichiometric metalation. Pd-catalyzed formal homologation of arylboronic acids provides access to these compounds that, in turn, allow the formation of C–C, C–O, and C–N bonds from Pd- and Cu-mediated cross-coupling or oxidative processes. This affords a wide variety of benzylic alcohols, diarylmethanes, benzyl amines, and benzyl ethers. Limitations are disclosed, and the utility is further demonstrated by the generation of analogues of meclizine.

Supporting Information



Publication History

Received: 02 June 2023

Accepted after revision: 22 June 2023

Accepted Manuscript online:
26 June 2023

Article published online:
15 August 2023

© 2023. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Meindl WR, Angerer EV, Schoenenberger H, Ruckdeschel G. J. Med. Chem. 1984; 27: 1111
    • 1b Gulati U, Gandi R, Laha JK. Chem. Asian J. 2020; 15: 3135
    • 2a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 2b Lennox AJ. J, Lloyd-Jones GC. Angew. Chem. Int. Ed. 2013; 52: 7362
    • 2c Lennox AJ. J, Lloyd-Jones GC. Chem. Soc. Rev. 2014; 43: 412
  • 3 Chahen L, Doucet H, Santelli M. Synlett 2003; 1668
  • 4 Burns MJ, Fairlamb IJ. S, Kapdi AR, Sehnal P, Taylor JK. Org. Lett. 2007; 9: 5397
  • 5 Molander GA, Ito T. Org. Lett. 2001; 3: 393
  • 6 Sandrock D, Jean-Gérard L, Chen C, Dreher SD, Molander GA. J. Am. Chem. Soc. 2010; 132: 17108
    • 7a Imao D, Glasspoole BW, Laberge VS, Crudden CM. J. Am. Chem. Soc. 2009; 131: 5024
    • 7b Matthew SC, Glasspoole BW, Eisenberger P, Crudden CM. J. Am. Chem. Soc. 2014; 136: 5828
  • 8 McLaughlin M. Org. Lett. 2005; 7: 4875
  • 9 Singh R, Viciu MS, Kramareva N, Navarro O, Nolan SP. Org. Lett. 2005; 7: 1829
  • 10 Zhang P, Xu J, Gao Y, Li X, Tang G, Zhao Y. Synlett 2014; 25: 2928
  • 11 Srimani D, Bej A, Sarkar A. J. Org. Chem. 2010; 75: 4296
  • 12 Yoon S, Hong MC, Rhee H. J. Org. Chem. 2014; 79: 4206
  • 13 Tang SQ, Schmitt M, Bihel F. Synthesis 2020; 52: 51
  • 14 Endo K, Ishioka T, Ohkubo T, Shibata T. J. Org. Chem. 2012; 77: 7223
    • 15a Podder S, Choudhury J, Roy S. J. Org. Chem. 2007; 72: 3129
    • 15b Tellis JC, Primer DN, Molander GA. Science 2014; 345: 433
    • 16a Tobisu M, Yasutome A, Kinuta H, Nakamura K, Chatani N. Org. Lett. 2014; 16: 5572
    • 16b Tobisu M, Takahira T, Chatani N. Org. Lett. 2015; 17: 4352
    • 16c Suga T, Ukaji Y. Org. Lett. 2018; 20: 7846
    • 16d Chen Y, Wang X, He X, An Q, Zuo Z. J. Am. Chem. Soc. 2021;  143: 4896
  • 17 Afanasyev OI, Kuchuk E, Usanov D. Chem. Rev. 2019; 119: 11857
    • 18a Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
    • 18b Dorel R, Grugel CP, Haydl AM. Angew. Chem. Int. Ed. 2019; 58: 17118
    • 18c Seifinoferest B, Tanbakouchian A, Larijani B, Mahdavi M. Asian J. Org. Chem. 2021; 10: 1319
    • 19a Qiao JX, Lam PY. S. Synthesis 2011; 829
    • 19b Qiao JX, Lam PY. S. Recent Advances in Chan–Lam Coupling Reaction: Copper-Promoted C-Heteroatom Bond Cross-Coupling Reactions with Boronic Acids and Derivatives. In Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine, Chap. 6. Hall DG. Wiley-VCH; Weinheim: 2011: 315-361
    • 19c Munir I, Zahoor AF, Rasool N, Naqvi SA. R, Zia KM, Ahmad R. Mol. Diversity 2019; 23: 215
    • 19d West MJ, Fyfe JW. B, Vantourout JC, Watson AJ. B. Chem. Rev. 2019; 119: 12491
    • 19e Vijayan A, Rao DN, Radhakrishnan KV, Lam PY. S, Das P. Synthesis 2021; 53: 805
    • 20a Fyfe JW. B, Watson AJ. B. Chem 2017; 3: 31
    • 20b Volochnyuk DM, Gorlova AO, Grygorenko OO. Chem Eur. J. 2021; 27: 15277
    • 20c Yang Y, Tsien J, David AB, Hughes JM. E, Merchant RR, Qin T. J. Am. Chem. Soc. 2021; 143: 471
    • 20d Koo SM, Vendola AJ, Momm SN, Morken JP. Org. Lett. 2020; 22: 666
    • 20e Blair DJ, Chitti S, Trobe M, Kostyra DM, Haley HM. S, Hansen RL, Ballmer SG, Woods TJ, Wang W, Mubayi V, Schmidt MJ, Pipal RW, Morehouse GF, Ray AM. E. P, Gray DL, Gill Burke MD. Nature 2022; 604: 92
    • 20f Ghosh S, Ghosh A, Pyne P, Hajra A. Org. Biomol. Chem. 2022; 20: 4496
  • 21 A survey of four commercial suppliers (Fluorochem, Alfa Aesar, Apollo, TCI Chemical) on 20/05/2023 found 2376 commercially available arylboronic acids, 1314 arylboronic esters, 9 benzyl boronic acids, and 30 benzyl boronic esters.
    • 22a Khotinsky E, Melamed M. Ber. Dtsch. Chem. Ges. 1909; 42: 3090
    • 22b Lawesson SO. Acta Chem. Scand. 1957; 11: 1075
    • 22c Li W, Nelson DP, Jensen MS, Hoerrner RS, Cai D, Larsen RD, Reide PJ. J. Org. Chem. 2002; 67: 5394
    • 23a Brown HC. Hydroboration 1962
    • 23b Pelter A, Smith K, Brown HC. Borane Reagents 1988
    • 23c Dhillion RS. Hydroboration and Organic Synthesis 2007
    • 24a Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 24b Ros A, Fernández R, Lassaletta JM. Chem. Soc. Rev. 2014; 43: 3229
    • 24c Xu L, Wang G, Zhang S, Wang H, Wang L, Liu L, Jiao J, Li P. Tetrahedron 2017; 73: 7123
    • 24d Haldar C, Hoque ME, Bisht R, Chattopadhyay B. Tetrahedron Lett. 2018; 59: 1269
    • 24e Iqbal SA, Pahl J, Yuan K, Ingleson MJ. Chem. Soc. Rev. 2020; 49: 4564
    • 24f Guo X.-N, Braunschweig H, Radius U, Marder TB. Chem. Rev. 2021; 121: 3561
    • 24g Bisht R, Haldar C, Hassan MM, Hoque ME, Chaturvedi J, Chattopadhyay B. Chem. Soc. Rev. 2022; 51: 5042
    • 25a Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 25b Jiang M, Yang H, Fu H. Org. Lett. 2016; 18: 5248
    • 25c Shu C, Noble A, Aggarwal VK. Nature 2020; 586: 714
    • 25d Wei Q, Lee Y, Liang W, Chen X, Mu B, Cui X.-Y, Wu W, Bai S, Liu Z. Nat. Commun. 2022; 13: 7112
  • 26 Matteson DS, Mah RW. H. J. Am. Chem. Soc. 1963; 85: 2599
    • 27a Matteson DS. Tetrahedron 1998; 54: 10555
    • 27b Matteson DS. J. Org. Chem. 2013; 78: 10009
    • 27c Matteson DS, Collins BS. L, Aggarwal VK, Ciganek E. Org. React. 2021; 105: 427
  • 28 Bastick KA. C, Watson AJ. B. ACS Catal. 2023; 13: 7013
    • 29a Fyfe JW. B, Seath CP, Watson AJ. B. Angew. Chem. Int. Ed. 2014; 53: 12077
    • 29b Seath CP, Fyfe JW. B, Molloy JJ, Watson AJ. B. Angew. Chem. Int. Ed. 2015; 54: 9976
    • 29c Fyfe JW. B, Watson AJ. B. Synlett 2015; 26: 1139
    • 29d Muir CW, Vantourout JC, Isidro-Llobet A, Macdonald SJ. F, Watson AJ. B. Org. Lett. 2015; 17: 6030
    • 29e Fyfe JW. B, Fazakerley NJ, Watson AJ. B. Angew. Chem. Int. Ed. 2017; 56: 1249
    • 29f Xu C, Fyfe JW. B, Seath CP, Bennett SH, Watson AJ. B. Chem. Commun. 2017; 53: 9139
    • 29g Molloy JJ, Seath CP, West MJ, McLaughlin C, Fazakerley NJ, Kennedy AR, Nelson DJ, Watson AJ. B. J. Am. Chem. Soc. 2018; 140: 126
  • 30 Sueki S, Kuninobu Y. Org. Lett. 2013; 15: 1544
    • 31a Wohl A. Ber. Dtsch. Chem. Ges. 1919; 52: 51
    • 31b Ziegler K. Justus Liebigs Ann. Chem. 1942; 551: 1
    • 32a Hu Y, Stumpfe D, Bajorath J. J. Med. Chem. 2017; 60: 1238
    • 32b Grisoni F, Merk D, Consonni V, Hiss JA, Tagliabue SG, Todeschini R, Schneider G. Commun. Chem. 2018; 1: 44
    • 32c Grisoni F, Merk D, Byrne R, Schneider G. Sci. Rep. 2018; 8: 16469
  • 33 The research data supporting this publication can be accessed at https://doi.org/ DOI: 10.17630/df058940-8cac-4ee2-abf4-da914cbcc446