Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2023; 55(19): 3186-3194
DOI: 10.1055/a-2114-7802
DOI: 10.1055/a-2114-7802
paper
Transition-Metal-Free and Selective Deconstructive Carbonyl Olefination of α-Hydroxy Ketones: A Complementary Approach to Knoevenagel Reaction
A.K. is grateful to the Science and Engineering Research Board, India, for the SERB-TARE project (Grant Number TAR/2022/000045).

Abstract
While the carbonyl olefination has been extensively studied and well documented, use of α-hydroxy ketones as precursors for the carbonyl olefination is not reported, till date. Herein, a transition-metal-free and selective Knoevenagel-type deconstructive carbonyl olefination of α-hydroxy ketones using arylacetonitriles under mild reaction conditions is presented. The reaction affords valuable scaffolds of acrylonitriles with the use of α-hydroxy ketones as precursors for carbonyl olefination.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2114-7802.
- Supporting Information
Publication History
Received: 21 May 2023
Accepted after revision: 21 June 2023
Accepted Manuscript online:
21 June 2023
Article published online:
17 July 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Junjiao W, Yuyu L, Yongwei S, Zhenli C, Ke-Hu W, Danfeng H, Yulai H. Chin. J. Org. Chem. 2022; 42: 2300
- 2 Liang H, Liu H, Jiang X. Synlett 2016; 27: 2774
- 3a Palomo C, Oiarbide M, García JM. Chem. Soc. Rev. 2012; 41: 4150
- 3b Cao J, Su YX, Zhang XY, Zhu SF. Angew. Chem. Int. Ed. 2023; 62: e202212976
- 4a Liu H, Qi C, Wang L, Guo Y, Li D, Jiang H. J. Org. Chem. 2021; 86: 9610
- 4b Qi C, Peng Y, Wang L, Ren Y, Jiang H. J. Org. Chem. 2018; 83: 11926
- 4c He H, Qi C, Hu X, Ouyang L, Xiong W, Jiang H. J. Org. Chem. 2015; 18: 4957
- 4d Babu VN, Murugan A, Katta N, Devatha S, Sharada DS. J. Org. Chem. 2019; 84: 6631
- 5a Chen L, Zhou J. Chem. Asian J. 2012; 7: 2510
- 5b Zhou F, Cao ZY, Zhang J, Yang HB, Zhou J. Chem. Asian J. 2012; 7: 233
- 5c Zhou F, Ding M, Zhou J. Org. Biomol. Chem. 2012; 10: 3178
- 5d Yin XP, Zhu L, Zhou J. Adv. Synth. Catal. 2018; 360: 1116
- 5e Zhu F, Zhou F, Cao ZY, Wang C, Zhang YX, Wang CH, Zhou J. Synthesis 2012; 44: 3129
- 6a Kumar A, Mondal S, Sandeep, Venugopalan P, Kumar A, Banerjee S. J. Am. Chem. Soc. 2022; 144: 3347
- 6b Sandeep, Venugopalan P, Kumar A. Eur. J. Org. Chem. 2020; 2530
- 6c Kumar A, Singh TV, Thomas SP, Venugopalan P. Eur. J. Org. Chem. 2015; 1226
- 6d Kumar A, Sharma RK, Singh TV, Venugopalan P. Tetrahedron 2013; 69: 10724
- 7a Dumeunie R, Marko IE. Modern Carbonyl Olefination . Tekeda T. Wiley-VCH; Weinheim: 2004: 104-105
- 7b Blakemore PR. Olefination of Carbonyl Compounds by Main-Group Element Mediators. In Comprehensive Organic Synthesis II, Vol. 1. Knochel P. Elsevier; Amsterdam: 2014: 516-608
- 8a Wittig G, Geissler G. Justus Liebigs Ann. Chem. 1953; 580: 44
- 8b Wittig G, Schollkopf U. Chem. Ber. 1954; 87: 1318
- 9a Horner L, Hoffman H, Wippel HG. Chem. Ber. 1958; 91: 61
- 9b Wadsworth WS, Emmons WD. J. Am. Chem. Soc. 1961; 83: 1733
- 9c Peterson DJ. J. Org. Chem. 1968; 33: 780
- 9d Julia M, Paris JM. Tetrahedron Lett. 1973; 14: 4833
- 9e Tebbe FN, Parshall GW, Reddy GS. J. Am. Chem. Soc. 1978; 100: 3611
- 10 DiBiase SA, Lipisko BA, Haag A, Wolak RA, Gokel GW. J. Org. Chem. 1979; 44: 4640
- 11a Paudel K, Xu S, Ding K. Org. Lett. 2021; 23: 5028
- 11b Bains AK, Ankit Y, Adhikari D. Org. Lett. 2021; 23: 2019
- 11c Yadav V, Landge VG, Subaramanian M, Balaraman E. ACS Catal. 2020; 10: 947
- 11d Thiyagarajan S, Gunanathan C. ACS Catal. 2018; 8: 2473
- 11e Chakraborty S, Das UK, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2017; 139: 11710
- 12a Filippini D, Silvi M. Nat. Chem. 2022; 14: 66
- 12b Niyomchon S, Oppedisano A, Aillard P, Maulide N. Nat. Commun. 2017; 8: 1091
- 12c Merad J, Grant PS, Stopka T, Sabbatani J, Meyrelles R, Preinfalk A, Matyasovsky J, Maryasin B, González L, Maulide N. J. Am. Chem. Soc. 2022; 144: 12536
- 12d Liu X, Sotiropoulos J.-M, Taillefer M. Eur. J. Org. Chem. 2022; e202200631
- 12e Ainembabazi D, Reid C, Chen A, An N, Kostal J, Voutchkova-Kostal A. J. Am. Chem. Soc. 2020; 142: 696
- 13 Tan OU, Zengin M. Arch. Pharm. (Weiheim) 2022; 355: e2100383
- 14 Zhou ZZ, Liu M, Lv L, Li CJ. Angew. Chem. Int. Ed. 2018; 57: 2616
- 15 Kulp SS, Caldwell CB. J. Org. Chem. 1980; 45: 171
- 16 Oh K.-B, Kim S.-H, Lee J, Cho W.-J, Lee T, Kim S. J. Med. Chem. 2004; 47: 2418
- 17 Li J, Liu Y, Tang W, Xue D, Li C, Xiao J, Wang C. Chem. Eur. J. 2017; 23: 14445
- 18 Chakraborty S, Das UK, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2017; 139: 11710
- 19 Choudhuri K, Pramanik M, Mal P. Eur. J. Org. Chem. 2020; 3906
- 20 Mukherjee N, Parida PK, Santra A, Ghosh T, Dutta A, Jana K, Misra AK, Babu SP. S. Free Radical Biol. Med. 2016; 93: 130
- 21 Ye R, Zhu M, Yan X, Long Y, Xia Y, Zhou X. ACS Catal. 2021; 11: 8678
- 22 Gopalakrishnan M, Sureshkumar P, Kanagarajan V, Thanusu J. Catal. Commun. 2005; 6: 753
- 23 Zhang Y, Yue X, Liang C, Zhao J, Yu W, Zhang P. Tetrahedron Lett. 2021; 80: 153321
- 24 Cai M, Peng J, Hao W, Ding G. Green Chem. 2011; 13: 190
- 25 Yi W-B, Cai C. J. Fluorine Chem. 2005; 126: 1191
- 26 Bernini R, Coratti A, Provenzano G, Fabrizi G, Tofani D. Tetrahedron 2005; 61: 1821
- 27 Kuriyama M, Shimazawa R, Shirai R. J. Org. Chem. 2008; 73: 1597